sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8216, base_ring=CyclotomicField(78))
M = H._module
chi = DirichletCharacter(H, M([39,39,39,76]))
pari:[g,chi] = znchar(Mod(2651,8216))
| Modulus: | \(8216\) | |
| Conductor: | \(8216\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(78\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8216}(51,\cdot)\)
\(\chi_{8216}(155,\cdot)\)
\(\chi_{8216}(467,\cdot)\)
\(\chi_{8216}(1611,\cdot)\)
\(\chi_{8216}(1819,\cdot)\)
\(\chi_{8216}(2443,\cdot)\)
\(\chi_{8216}(2547,\cdot)\)
\(\chi_{8216}(2651,\cdot)\)
\(\chi_{8216}(2963,\cdot)\)
\(\chi_{8216}(3171,\cdot)\)
\(\chi_{8216}(3275,\cdot)\)
\(\chi_{8216}(3587,\cdot)\)
\(\chi_{8216}(4315,\cdot)\)
\(\chi_{8216}(4523,\cdot)\)
\(\chi_{8216}(4627,\cdot)\)
\(\chi_{8216}(4835,\cdot)\)
\(\chi_{8216}(5771,\cdot)\)
\(\chi_{8216}(6187,\cdot)\)
\(\chi_{8216}(6291,\cdot)\)
\(\chi_{8216}(6915,\cdot)\)
\(\chi_{8216}(7123,\cdot)\)
\(\chi_{8216}(7435,\cdot)\)
\(\chi_{8216}(7747,\cdot)\)
\(\chi_{8216}(8163,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((2055,4109,3161,3953)\) → \((-1,-1,-1,e\left(\frac{38}{39}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(15\) | \(17\) | \(19\) | \(21\) | \(23\) |
| \( \chi_{ 8216 }(2651, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{38}{39}\right)\) | \(e\left(\frac{16}{39}\right)\) | \(e\left(\frac{25}{39}\right)\) | \(e\left(\frac{37}{39}\right)\) | \(e\left(\frac{59}{78}\right)\) | \(e\left(\frac{5}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{53}{78}\right)\) | \(e\left(\frac{8}{13}\right)\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)