Properties

Label 8216.15
Modulus $8216$
Conductor $4108$
Order $156$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8216, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([78,0,13,126]))
 
Copy content pari:[g,chi] = znchar(Mod(15,8216))
 

Basic properties

Modulus: \(8216\)
Conductor: \(4108\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4108}(15,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8216.ix

\(\chi_{8216}(15,\cdot)\) \(\chi_{8216}(71,\cdot)\) \(\chi_{8216}(175,\cdot)\) \(\chi_{8216}(215,\cdot)\) \(\chi_{8216}(535,\cdot)\) \(\chi_{8216}(847,\cdot)\) \(\chi_{8216}(1463,\cdot)\) \(\chi_{8216}(1671,\cdot)\) \(\chi_{8216}(1831,\cdot)\) \(\chi_{8216}(2087,\cdot)\) \(\chi_{8216}(2095,\cdot)\) \(\chi_{8216}(2191,\cdot)\) \(\chi_{8216}(2303,\cdot)\) \(\chi_{8216}(2463,\cdot)\) \(\chi_{8216}(2719,\cdot)\) \(\chi_{8216}(2823,\cdot)\) \(\chi_{8216}(2871,\cdot)\) \(\chi_{8216}(3231,\cdot)\) \(\chi_{8216}(3335,\cdot)\) \(\chi_{8216}(3503,\cdot)\) \(\chi_{8216}(3703,\cdot)\) \(\chi_{8216}(3807,\cdot)\) \(\chi_{8216}(3863,\cdot)\) \(\chi_{8216}(3967,\cdot)\) \(\chi_{8216}(4327,\cdot)\) \(\chi_{8216}(4335,\cdot)\) \(\chi_{8216}(4439,\cdot)\) \(\chi_{8216}(4639,\cdot)\) \(\chi_{8216}(4959,\cdot)\) \(\chi_{8216}(5271,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((2055,4109,3161,3953)\) → \((-1,1,e\left(\frac{1}{12}\right),e\left(\frac{21}{26}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(15\)\(17\)\(19\)\(21\)\(23\)
\( \chi_{ 8216 }(15, a) \) \(-1\)\(1\)\(e\left(\frac{25}{39}\right)\)\(e\left(\frac{43}{52}\right)\)\(e\left(\frac{35}{156}\right)\)\(e\left(\frac{11}{39}\right)\)\(e\left(\frac{1}{156}\right)\)\(e\left(\frac{73}{156}\right)\)\(e\left(\frac{5}{39}\right)\)\(e\left(\frac{119}{156}\right)\)\(e\left(\frac{45}{52}\right)\)\(e\left(\frac{1}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8216 }(15,a) \;\) at \(\;a = \) e.g. 2