Properties

Label 816.179
Modulus $816$
Conductor $816$
Order $8$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(816, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([4,6,4,1]))
 
Copy content pari:[g,chi] = znchar(Mod(179,816))
 

Basic properties

Modulus: \(816\)
Conductor: \(816\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 816.bs

\(\chi_{816}(155,\cdot)\) \(\chi_{816}(179,\cdot)\) \(\chi_{816}(467,\cdot)\) \(\chi_{816}(491,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.139407896139005952.1

Values on generators

\((511,613,545,241)\) → \((-1,-i,-1,e\left(\frac{1}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 816 }(179, a) \) \(1\)\(1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(-i\)\(-1\)\(e\left(\frac{3}{8}\right)\)\(-i\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 816 }(179,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 816 }(179,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 816 }(179,·),\chi_{ 816 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 816 }(179,·)) \;\) at \(\; a,b = \) e.g. 1,2