sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8112, base_ring=CyclotomicField(26))
M = H._module
chi = DirichletCharacter(H, M([13,13,13,9]))
pari:[g,chi] = znchar(Mod(7175,8112))
\(\chi_{8112}(311,\cdot)\)
\(\chi_{8112}(935,\cdot)\)
\(\chi_{8112}(1559,\cdot)\)
\(\chi_{8112}(2183,\cdot)\)
\(\chi_{8112}(2807,\cdot)\)
\(\chi_{8112}(3431,\cdot)\)
\(\chi_{8112}(4679,\cdot)\)
\(\chi_{8112}(5303,\cdot)\)
\(\chi_{8112}(5927,\cdot)\)
\(\chi_{8112}(6551,\cdot)\)
\(\chi_{8112}(7175,\cdot)\)
\(\chi_{8112}(7799,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5071,6085,2705,3889)\) → \((-1,-1,-1,e\left(\frac{9}{26}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 8112 }(7175, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{26}\right)\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{3}{13}\right)\) | \(e\left(\frac{11}{13}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{17}{26}\right)\) |
sage:chi.jacobi_sum(n)