Properties

Label 8112.5591
Modulus $8112$
Conductor $4056$
Order $26$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(26)) M = H._module chi = DirichletCharacter(H, M([13,13,13,18]))
 
Copy content pari:[g,chi] = znchar(Mod(5591,8112))
 

Basic properties

Modulus: \(8112\)
Conductor: \(4056\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(26\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{4056}(3563,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8112.dj

\(\chi_{8112}(599,\cdot)\) \(\chi_{8112}(1223,\cdot)\) \(\chi_{8112}(1847,\cdot)\) \(\chi_{8112}(2471,\cdot)\) \(\chi_{8112}(3095,\cdot)\) \(\chi_{8112}(4343,\cdot)\) \(\chi_{8112}(4967,\cdot)\) \(\chi_{8112}(5591,\cdot)\) \(\chi_{8112}(6215,\cdot)\) \(\chi_{8112}(6839,\cdot)\) \(\chi_{8112}(7463,\cdot)\) \(\chi_{8112}(8087,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: Number field defined by a degree 26 polynomial

Values on generators

\((5071,6085,2705,3889)\) → \((-1,-1,-1,e\left(\frac{9}{13}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8112 }(5591, a) \) \(1\)\(1\)\(e\left(\frac{3}{13}\right)\)\(e\left(\frac{15}{26}\right)\)\(e\left(\frac{21}{26}\right)\)\(e\left(\frac{15}{26}\right)\)\(1\)\(1\)\(e\left(\frac{6}{13}\right)\)\(e\left(\frac{9}{13}\right)\)\(e\left(\frac{1}{26}\right)\)\(e\left(\frac{21}{26}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8112 }(5591,a) \;\) at \(\;a = \) e.g. 2