Properties

Label 8112.4681
Modulus $8112$
Conductor $1352$
Order $26$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(26)) M = H._module chi = DirichletCharacter(H, M([0,13,0,6]))
 
Copy content pari:[g,chi] = znchar(Mod(4681,8112))
 

Basic properties

Modulus: \(8112\)
Conductor: \(1352\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(26\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1352}(1301,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8112.dm

\(\chi_{8112}(313,\cdot)\) \(\chi_{8112}(937,\cdot)\) \(\chi_{8112}(1561,\cdot)\) \(\chi_{8112}(2185,\cdot)\) \(\chi_{8112}(2809,\cdot)\) \(\chi_{8112}(3433,\cdot)\) \(\chi_{8112}(4681,\cdot)\) \(\chi_{8112}(5305,\cdot)\) \(\chi_{8112}(5929,\cdot)\) \(\chi_{8112}(6553,\cdot)\) \(\chi_{8112}(7177,\cdot)\) \(\chi_{8112}(7801,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: Number field defined by a degree 26 polynomial

Values on generators

\((5071,6085,2705,3889)\) → \((1,-1,1,e\left(\frac{3}{13}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8112 }(4681, a) \) \(1\)\(1\)\(e\left(\frac{15}{26}\right)\)\(e\left(\frac{9}{13}\right)\)\(e\left(\frac{7}{26}\right)\)\(e\left(\frac{9}{13}\right)\)\(-1\)\(1\)\(e\left(\frac{2}{13}\right)\)\(e\left(\frac{19}{26}\right)\)\(e\left(\frac{11}{13}\right)\)\(e\left(\frac{7}{26}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8112 }(4681,a) \;\) at \(\;a = \) e.g. 2