Properties

Label 8112.4543
Modulus $8112$
Conductor $676$
Order $156$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(156)) M = H._module chi = DirichletCharacter(H, M([78,0,0,89]))
 
Copy content pari:[g,chi] = znchar(Mod(4543,8112))
 

Basic properties

Modulus: \(8112\)
Conductor: \(676\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(156\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{676}(487,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8112.fp

\(\chi_{8112}(175,\cdot)\) \(\chi_{8112}(223,\cdot)\) \(\chi_{8112}(271,\cdot)\) \(\chi_{8112}(799,\cdot)\) \(\chi_{8112}(847,\cdot)\) \(\chi_{8112}(895,\cdot)\) \(\chi_{8112}(943,\cdot)\) \(\chi_{8112}(1423,\cdot)\) \(\chi_{8112}(1471,\cdot)\) \(\chi_{8112}(1519,\cdot)\) \(\chi_{8112}(1567,\cdot)\) \(\chi_{8112}(2095,\cdot)\) \(\chi_{8112}(2143,\cdot)\) \(\chi_{8112}(2191,\cdot)\) \(\chi_{8112}(2671,\cdot)\) \(\chi_{8112}(2719,\cdot)\) \(\chi_{8112}(2767,\cdot)\) \(\chi_{8112}(2815,\cdot)\) \(\chi_{8112}(3295,\cdot)\) \(\chi_{8112}(3343,\cdot)\) \(\chi_{8112}(3391,\cdot)\) \(\chi_{8112}(3439,\cdot)\) \(\chi_{8112}(3919,\cdot)\) \(\chi_{8112}(4015,\cdot)\) \(\chi_{8112}(4063,\cdot)\) \(\chi_{8112}(4543,\cdot)\) \(\chi_{8112}(4591,\cdot)\) \(\chi_{8112}(4639,\cdot)\) \(\chi_{8112}(4687,\cdot)\) \(\chi_{8112}(5167,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{156})$
Fixed field: Number field defined by a degree 156 polynomial (not computed)

Values on generators

\((5071,6085,2705,3889)\) → \((-1,1,1,e\left(\frac{89}{156}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8112 }(4543, a) \) \(1\)\(1\)\(e\left(\frac{7}{52}\right)\)\(e\left(\frac{85}{156}\right)\)\(e\left(\frac{41}{156}\right)\)\(e\left(\frac{23}{78}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{7}{26}\right)\)\(e\left(\frac{32}{39}\right)\)\(e\left(\frac{25}{52}\right)\)\(e\left(\frac{53}{78}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8112 }(4543,a) \;\) at \(\;a = \) e.g. 2