sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8112, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,6,0,11]))
pari:[g,chi] = znchar(Mod(4375,8112))
\(\chi_{8112}(2455,\cdot)\)
\(\chi_{8112}(4375,\cdot)\)
\(\chi_{8112}(6103,\cdot)\)
\(\chi_{8112}(8023,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5071,6085,2705,3889)\) → \((-1,-1,1,e\left(\frac{11}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 8112 }(4375, a) \) |
\(1\) | \(1\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-1\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{3}\right)\) |
sage:chi.jacobi_sum(n)