Properties

Label 8112.4375
Modulus $8112$
Conductor $104$
Order $12$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(12)) M = H._module chi = DirichletCharacter(H, M([6,6,0,11]))
 
Copy content pari:[g,chi] = znchar(Mod(4375,8112))
 

Basic properties

Modulus: \(8112\)
Conductor: \(104\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(12\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{104}(59,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8112.cr

\(\chi_{8112}(2455,\cdot)\) \(\chi_{8112}(4375,\cdot)\) \(\chi_{8112}(6103,\cdot)\) \(\chi_{8112}(8023,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.469804094334435328.1

Values on generators

\((5071,6085,2705,3889)\) → \((-1,-1,1,e\left(\frac{11}{12}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8112 }(4375, a) \) \(1\)\(1\)\(-i\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(e\left(\frac{1}{6}\right)\)\(-i\)\(e\left(\frac{1}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8112 }(4375,a) \;\) at \(\;a = \) e.g. 2