Properties

Label 8112.2365
Modulus $8112$
Conductor $208$
Order $4$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([0,3,0,2]))
 
Copy content pari:[g,chi] = znchar(Mod(2365,8112))
 

Basic properties

Modulus: \(8112\)
Conductor: \(208\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{208}(77,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8112.bj

\(\chi_{8112}(2365,\cdot)\) \(\chi_{8112}(6421,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.4.346112.1

Values on generators

\((5071,6085,2705,3889)\) → \((1,-i,1,-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8112 }(2365, a) \) \(1\)\(1\)\(i\)\(1\)\(i\)\(1\)\(-i\)\(-1\)\(-1\)\(i\)\(-1\)\(i\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8112 }(2365,a) \;\) at \(\;a = \) e.g. 2