sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8112, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,3,0,2]))
pari:[g,chi] = znchar(Mod(2365,8112))
\(\chi_{8112}(2365,\cdot)\)
\(\chi_{8112}(6421,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5071,6085,2705,3889)\) → \((1,-i,1,-1)\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 8112 }(2365, a) \) |
\(1\) | \(1\) | \(i\) | \(1\) | \(i\) | \(1\) | \(-i\) | \(-1\) | \(-1\) | \(i\) | \(-1\) | \(i\) |
sage:chi.jacobi_sum(n)