sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8112, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([0,13,26,29]))
pari:[g,chi] = znchar(Mod(1685,8112))
Modulus: | \(8112\) | |
Conductor: | \(8112\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(52\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8112}(317,\cdot)\)
\(\chi_{8112}(941,\cdot)\)
\(\chi_{8112}(1061,\cdot)\)
\(\chi_{8112}(1565,\cdot)\)
\(\chi_{8112}(1685,\cdot)\)
\(\chi_{8112}(2189,\cdot)\)
\(\chi_{8112}(2309,\cdot)\)
\(\chi_{8112}(2813,\cdot)\)
\(\chi_{8112}(2933,\cdot)\)
\(\chi_{8112}(3437,\cdot)\)
\(\chi_{8112}(3557,\cdot)\)
\(\chi_{8112}(4061,\cdot)\)
\(\chi_{8112}(4181,\cdot)\)
\(\chi_{8112}(4685,\cdot)\)
\(\chi_{8112}(4805,\cdot)\)
\(\chi_{8112}(5429,\cdot)\)
\(\chi_{8112}(5933,\cdot)\)
\(\chi_{8112}(6053,\cdot)\)
\(\chi_{8112}(6557,\cdot)\)
\(\chi_{8112}(6677,\cdot)\)
\(\chi_{8112}(7181,\cdot)\)
\(\chi_{8112}(7301,\cdot)\)
\(\chi_{8112}(7805,\cdot)\)
\(\chi_{8112}(7925,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5071,6085,2705,3889)\) → \((1,i,-1,e\left(\frac{29}{52}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 8112 }(1685, a) \) |
\(1\) | \(1\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{9}{52}\right)\) | \(e\left(\frac{5}{26}\right)\) | \(e\left(\frac{12}{13}\right)\) | \(1\) | \(-1\) | \(e\left(\frac{7}{13}\right)\) | \(e\left(\frac{29}{52}\right)\) | \(e\left(\frac{37}{52}\right)\) | \(e\left(\frac{49}{52}\right)\) |
sage:chi.jacobi_sum(n)