Properties

Label 8112.1091
Modulus $8112$
Conductor $8112$
Order $52$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8112, base_ring=CyclotomicField(52)) M = H._module chi = DirichletCharacter(H, M([26,39,26,18]))
 
Copy content pari:[g,chi] = znchar(Mod(1091,8112))
 

Basic properties

Modulus: \(8112\)
Conductor: \(8112\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(52\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8112.el

\(\chi_{8112}(155,\cdot)\) \(\chi_{8112}(467,\cdot)\) \(\chi_{8112}(779,\cdot)\) \(\chi_{8112}(1091,\cdot)\) \(\chi_{8112}(1403,\cdot)\) \(\chi_{8112}(1715,\cdot)\) \(\chi_{8112}(2339,\cdot)\) \(\chi_{8112}(2651,\cdot)\) \(\chi_{8112}(2963,\cdot)\) \(\chi_{8112}(3275,\cdot)\) \(\chi_{8112}(3587,\cdot)\) \(\chi_{8112}(3899,\cdot)\) \(\chi_{8112}(4211,\cdot)\) \(\chi_{8112}(4523,\cdot)\) \(\chi_{8112}(4835,\cdot)\) \(\chi_{8112}(5147,\cdot)\) \(\chi_{8112}(5459,\cdot)\) \(\chi_{8112}(5771,\cdot)\) \(\chi_{8112}(6395,\cdot)\) \(\chi_{8112}(6707,\cdot)\) \(\chi_{8112}(7019,\cdot)\) \(\chi_{8112}(7331,\cdot)\) \(\chi_{8112}(7643,\cdot)\) \(\chi_{8112}(7955,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Values on generators

\((5071,6085,2705,3889)\) → \((-1,-i,-1,e\left(\frac{9}{26}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 8112 }(1091, a) \) \(1\)\(1\)\(e\left(\frac{19}{52}\right)\)\(e\left(\frac{1}{26}\right)\)\(e\left(\frac{21}{52}\right)\)\(e\left(\frac{1}{26}\right)\)\(i\)\(-1\)\(e\left(\frac{19}{26}\right)\)\(e\left(\frac{31}{52}\right)\)\(e\left(\frac{10}{13}\right)\)\(e\left(\frac{21}{52}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8112 }(1091,a) \;\) at \(\;a = \) e.g. 2