sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8112, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([26,39,26,18]))
pari:[g,chi] = znchar(Mod(1091,8112))
Modulus: | \(8112\) | |
Conductor: | \(8112\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(52\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8112}(155,\cdot)\)
\(\chi_{8112}(467,\cdot)\)
\(\chi_{8112}(779,\cdot)\)
\(\chi_{8112}(1091,\cdot)\)
\(\chi_{8112}(1403,\cdot)\)
\(\chi_{8112}(1715,\cdot)\)
\(\chi_{8112}(2339,\cdot)\)
\(\chi_{8112}(2651,\cdot)\)
\(\chi_{8112}(2963,\cdot)\)
\(\chi_{8112}(3275,\cdot)\)
\(\chi_{8112}(3587,\cdot)\)
\(\chi_{8112}(3899,\cdot)\)
\(\chi_{8112}(4211,\cdot)\)
\(\chi_{8112}(4523,\cdot)\)
\(\chi_{8112}(4835,\cdot)\)
\(\chi_{8112}(5147,\cdot)\)
\(\chi_{8112}(5459,\cdot)\)
\(\chi_{8112}(5771,\cdot)\)
\(\chi_{8112}(6395,\cdot)\)
\(\chi_{8112}(6707,\cdot)\)
\(\chi_{8112}(7019,\cdot)\)
\(\chi_{8112}(7331,\cdot)\)
\(\chi_{8112}(7643,\cdot)\)
\(\chi_{8112}(7955,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5071,6085,2705,3889)\) → \((-1,-i,-1,e\left(\frac{9}{26}\right))\)
\(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
\( \chi_{ 8112 }(1091, a) \) |
\(1\) | \(1\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(e\left(\frac{21}{52}\right)\) | \(e\left(\frac{1}{26}\right)\) | \(i\) | \(-1\) | \(e\left(\frac{19}{26}\right)\) | \(e\left(\frac{31}{52}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{21}{52}\right)\) |
sage:chi.jacobi_sum(n)