sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(81, base_ring=CyclotomicField(54))
M = H._module
chi = DirichletCharacter(H, M([20]))
pari:[g,chi] = znchar(Mod(31,81))
Modulus: | \(81\) | |
Conductor: | \(81\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(27\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{81}(4,\cdot)\)
\(\chi_{81}(7,\cdot)\)
\(\chi_{81}(13,\cdot)\)
\(\chi_{81}(16,\cdot)\)
\(\chi_{81}(22,\cdot)\)
\(\chi_{81}(25,\cdot)\)
\(\chi_{81}(31,\cdot)\)
\(\chi_{81}(34,\cdot)\)
\(\chi_{81}(40,\cdot)\)
\(\chi_{81}(43,\cdot)\)
\(\chi_{81}(49,\cdot)\)
\(\chi_{81}(52,\cdot)\)
\(\chi_{81}(58,\cdot)\)
\(\chi_{81}(61,\cdot)\)
\(\chi_{81}(67,\cdot)\)
\(\chi_{81}(70,\cdot)\)
\(\chi_{81}(76,\cdot)\)
\(\chi_{81}(79,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\(2\) → \(e\left(\frac{10}{27}\right)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 81 }(31, a) \) |
\(1\) | \(1\) | \(e\left(\frac{10}{27}\right)\) | \(e\left(\frac{20}{27}\right)\) | \(e\left(\frac{14}{27}\right)\) | \(e\left(\frac{25}{27}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{22}{27}\right)\) | \(e\left(\frac{26}{27}\right)\) | \(e\left(\frac{8}{27}\right)\) | \(e\left(\frac{13}{27}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)