Properties

Label 805.67
Modulus $805$
Conductor $805$
Order $132$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(805, base_ring=CyclotomicField(132)) M = H._module chi = DirichletCharacter(H, M([33,88,78]))
 
Copy content pari:[g,chi] = znchar(Mod(67,805))
 

Basic properties

Modulus: \(805\)
Conductor: \(805\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(132\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 805.bs

\(\chi_{805}(37,\cdot)\) \(\chi_{805}(53,\cdot)\) \(\chi_{805}(67,\cdot)\) \(\chi_{805}(88,\cdot)\) \(\chi_{805}(102,\cdot)\) \(\chi_{805}(107,\cdot)\) \(\chi_{805}(158,\cdot)\) \(\chi_{805}(172,\cdot)\) \(\chi_{805}(198,\cdot)\) \(\chi_{805}(212,\cdot)\) \(\chi_{805}(228,\cdot)\) \(\chi_{805}(247,\cdot)\) \(\chi_{805}(263,\cdot)\) \(\chi_{805}(268,\cdot)\) \(\chi_{805}(333,\cdot)\) \(\chi_{805}(352,\cdot)\) \(\chi_{805}(373,\cdot)\) \(\chi_{805}(382,\cdot)\) \(\chi_{805}(387,\cdot)\) \(\chi_{805}(408,\cdot)\) \(\chi_{805}(452,\cdot)\) \(\chi_{805}(457,\cdot)\) \(\chi_{805}(513,\cdot)\) \(\chi_{805}(527,\cdot)\) \(\chi_{805}(543,\cdot)\) \(\chi_{805}(548,\cdot)\) \(\chi_{805}(557,\cdot)\) \(\chi_{805}(562,\cdot)\) \(\chi_{805}(592,\cdot)\) \(\chi_{805}(613,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{132})$
Fixed field: Number field defined by a degree 132 polynomial (not computed)

Values on generators

\((162,346,281)\) → \((i,e\left(\frac{2}{3}\right),e\left(\frac{13}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(11\)\(12\)\(13\)\(16\)
\( \chi_{ 805 }(67, a) \) \(1\)\(1\)\(e\left(\frac{101}{132}\right)\)\(e\left(\frac{115}{132}\right)\)\(e\left(\frac{35}{66}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{13}{44}\right)\)\(e\left(\frac{49}{66}\right)\)\(e\left(\frac{65}{66}\right)\)\(e\left(\frac{53}{132}\right)\)\(e\left(\frac{1}{44}\right)\)\(e\left(\frac{2}{33}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 805 }(67,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 805 }(67,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 805 }(67,·),\chi_{ 805 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 805 }(67,·)) \;\) at \(\; a,b = \) e.g. 1,2