sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(805, base_ring=CyclotomicField(66))
M = H._module
chi = DirichletCharacter(H, M([33,55,27]))
pari:[g,chi] = znchar(Mod(264,805))
Modulus: | \(805\) | |
Conductor: | \(805\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(66\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{805}(19,\cdot)\)
\(\chi_{805}(89,\cdot)\)
\(\chi_{805}(129,\cdot)\)
\(\chi_{805}(159,\cdot)\)
\(\chi_{805}(194,\cdot)\)
\(\chi_{805}(199,\cdot)\)
\(\chi_{805}(264,\cdot)\)
\(\chi_{805}(304,\cdot)\)
\(\chi_{805}(339,\cdot)\)
\(\chi_{805}(444,\cdot)\)
\(\chi_{805}(474,\cdot)\)
\(\chi_{805}(479,\cdot)\)
\(\chi_{805}(544,\cdot)\)
\(\chi_{805}(549,\cdot)\)
\(\chi_{805}(619,\cdot)\)
\(\chi_{805}(649,\cdot)\)
\(\chi_{805}(654,\cdot)\)
\(\chi_{805}(684,\cdot)\)
\(\chi_{805}(724,\cdot)\)
\(\chi_{805}(789,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((162,346,281)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{9}{22}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
\( \chi_{ 805 }(264, a) \) |
\(1\) | \(1\) | \(e\left(\frac{65}{66}\right)\) | \(e\left(\frac{29}{33}\right)\) | \(e\left(\frac{32}{33}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{25}{33}\right)\) | \(e\left(\frac{1}{66}\right)\) | \(e\left(\frac{28}{33}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{31}{33}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)