sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(805, base_ring=CyclotomicField(132))
M = H._module
chi = DirichletCharacter(H, M([99,88,72]))
pari:[g,chi] = znchar(Mod(18,805))
Modulus: | \(805\) | |
Conductor: | \(805\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(132\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{805}(2,\cdot)\)
\(\chi_{805}(18,\cdot)\)
\(\chi_{805}(32,\cdot)\)
\(\chi_{805}(58,\cdot)\)
\(\chi_{805}(72,\cdot)\)
\(\chi_{805}(123,\cdot)\)
\(\chi_{805}(128,\cdot)\)
\(\chi_{805}(142,\cdot)\)
\(\chi_{805}(163,\cdot)\)
\(\chi_{805}(177,\cdot)\)
\(\chi_{805}(193,\cdot)\)
\(\chi_{805}(233,\cdot)\)
\(\chi_{805}(242,\cdot)\)
\(\chi_{805}(282,\cdot)\)
\(\chi_{805}(303,\cdot)\)
\(\chi_{805}(312,\cdot)\)
\(\chi_{805}(317,\cdot)\)
\(\chi_{805}(338,\cdot)\)
\(\chi_{805}(347,\cdot)\)
\(\chi_{805}(403,\cdot)\)
\(\chi_{805}(417,\cdot)\)
\(\chi_{805}(422,\cdot)\)
\(\chi_{805}(443,\cdot)\)
\(\chi_{805}(473,\cdot)\)
\(\chi_{805}(478,\cdot)\)
\(\chi_{805}(487,\cdot)\)
\(\chi_{805}(492,\cdot)\)
\(\chi_{805}(508,\cdot)\)
\(\chi_{805}(522,\cdot)\)
\(\chi_{805}(578,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((162,346,281)\) → \((-i,e\left(\frac{2}{3}\right),e\left(\frac{6}{11}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) | \(16\) |
\( \chi_{ 805 }(18, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{23}{132}\right)\) | \(e\left(\frac{85}{132}\right)\) | \(e\left(\frac{23}{66}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{23}{44}\right)\) | \(e\left(\frac{19}{66}\right)\) | \(e\left(\frac{19}{33}\right)\) | \(e\left(\frac{131}{132}\right)\) | \(e\left(\frac{39}{44}\right)\) | \(e\left(\frac{23}{33}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)