Properties

Label 805.17
Modulus $805$
Conductor $805$
Order $132$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(805, base_ring=CyclotomicField(132)) M = H._module chi = DirichletCharacter(H, M([33,22,42]))
 
Copy content pari:[g,chi] = znchar(Mod(17,805))
 

Basic properties

Modulus: \(805\)
Conductor: \(805\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(132\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 805.bu

\(\chi_{805}(17,\cdot)\) \(\chi_{805}(33,\cdot)\) \(\chi_{805}(38,\cdot)\) \(\chi_{805}(103,\cdot)\) \(\chi_{805}(122,\cdot)\) \(\chi_{805}(143,\cdot)\) \(\chi_{805}(152,\cdot)\) \(\chi_{805}(157,\cdot)\) \(\chi_{805}(178,\cdot)\) \(\chi_{805}(222,\cdot)\) \(\chi_{805}(227,\cdot)\) \(\chi_{805}(283,\cdot)\) \(\chi_{805}(297,\cdot)\) \(\chi_{805}(313,\cdot)\) \(\chi_{805}(318,\cdot)\) \(\chi_{805}(327,\cdot)\) \(\chi_{805}(332,\cdot)\) \(\chi_{805}(362,\cdot)\) \(\chi_{805}(383,\cdot)\) \(\chi_{805}(388,\cdot)\) \(\chi_{805}(402,\cdot)\) \(\chi_{805}(458,\cdot)\) \(\chi_{805}(467,\cdot)\) \(\chi_{805}(488,\cdot)\) \(\chi_{805}(493,\cdot)\) \(\chi_{805}(502,\cdot)\) \(\chi_{805}(523,\cdot)\) \(\chi_{805}(563,\cdot)\) \(\chi_{805}(572,\cdot)\) \(\chi_{805}(612,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{132})$
Fixed field: Number field defined by a degree 132 polynomial (not computed)

Values on generators

\((162,346,281)\) → \((i,e\left(\frac{1}{6}\right),e\left(\frac{7}{22}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(8\)\(9\)\(11\)\(12\)\(13\)\(16\)
\( \chi_{ 805 }(17, a) \) \(-1\)\(1\)\(e\left(\frac{29}{132}\right)\)\(e\left(\frac{1}{132}\right)\)\(e\left(\frac{29}{66}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{29}{44}\right)\)\(e\left(\frac{1}{66}\right)\)\(e\left(\frac{35}{66}\right)\)\(e\left(\frac{59}{132}\right)\)\(e\left(\frac{31}{44}\right)\)\(e\left(\frac{29}{33}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 805 }(17,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 805 }(17,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 805 }(17,·),\chi_{ 805 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 805 }(17,·)) \;\) at \(\; a,b = \) e.g. 1,2