Properties

Label 8041.fy
Modulus $8041$
Conductor $8041$
Order $840$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8041, base_ring=CyclotomicField(840)) M = H._module chi = DirichletCharacter(H, M([504,105,40])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(9,8041)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8041\)
Conductor: \(8041\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(840\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{840})$
Fixed field: Number field defined by a degree 840 polynomial (not computed)

First 31 of 192 characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(3\) \(4\) \(5\) \(6\) \(7\) \(8\) \(9\) \(10\) \(12\)
\(\chi_{8041}(9,\cdot)\) \(1\) \(1\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{817}{840}\right)\) \(e\left(\frac{19}{70}\right)\) \(e\left(\frac{181}{840}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{127}{140}\right)\) \(e\left(\frac{397}{420}\right)\) \(e\left(\frac{143}{168}\right)\) \(e\left(\frac{41}{168}\right)\)
\(\chi_{8041}(15,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{140}\right)\) \(e\left(\frac{499}{840}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{127}{840}\right)\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{69}{140}\right)\) \(e\left(\frac{79}{420}\right)\) \(e\left(\frac{53}{168}\right)\) \(e\left(\frac{155}{168}\right)\)
\(\chi_{8041}(25,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{181}{840}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{73}{840}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{181}{420}\right)\) \(e\left(\frac{131}{168}\right)\) \(e\left(\frac{101}{168}\right)\)
\(\chi_{8041}(53,\cdot)\) \(1\) \(1\) \(e\left(\frac{39}{140}\right)\) \(e\left(\frac{767}{840}\right)\) \(e\left(\frac{39}{70}\right)\) \(e\left(\frac{611}{840}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{347}{420}\right)\) \(e\left(\frac{1}{168}\right)\) \(e\left(\frac{79}{168}\right)\)
\(\chi_{8041}(60,\cdot)\) \(1\) \(1\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{193}{840}\right)\) \(e\left(\frac{11}{70}\right)\) \(e\left(\frac{709}{840}\right)\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{103}{140}\right)\) \(e\left(\frac{193}{420}\right)\) \(e\left(\frac{71}{168}\right)\) \(e\left(\frac{65}{168}\right)\)
\(\chi_{8041}(185,\cdot)\) \(1\) \(1\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{787}{840}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{271}{840}\right)\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{367}{420}\right)\) \(e\left(\frac{125}{168}\right)\) \(e\left(\frac{131}{168}\right)\)
\(\chi_{8041}(196,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{140}\right)\) \(e\left(\frac{737}{840}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{701}{840}\right)\) \(e\left(\frac{113}{120}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{317}{420}\right)\) \(e\left(\frac{151}{168}\right)\) \(e\left(\frac{1}{168}\right)\)
\(\chi_{8041}(212,\cdot)\) \(1\) \(1\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{461}{840}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{353}{840}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{97}{120}\right)\) \(e\left(\frac{11}{140}\right)\) \(e\left(\frac{41}{420}\right)\) \(e\left(\frac{19}{168}\right)\) \(e\left(\frac{157}{168}\right)\)
\(\chi_{8041}(229,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{757}{840}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{361}{840}\right)\) \(e\left(\frac{13}{120}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{337}{420}\right)\) \(e\left(\frac{107}{168}\right)\) \(e\left(\frac{53}{168}\right)\)
\(\chi_{8041}(240,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{727}{840}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{451}{840}\right)\) \(e\left(\frac{103}{120}\right)\) \(e\left(\frac{59}{120}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{307}{420}\right)\) \(e\left(\frac{89}{168}\right)\) \(e\left(\frac{143}{168}\right)\)
\(\chi_{8041}(246,\cdot)\) \(1\) \(1\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{29}{840}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{137}{840}\right)\) \(e\left(\frac{101}{120}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{59}{140}\right)\) \(e\left(\frac{29}{420}\right)\) \(e\left(\frac{163}{168}\right)\) \(e\left(\frac{109}{168}\right)\)
\(\chi_{8041}(400,\cdot)\) \(1\) \(1\) \(e\left(\frac{73}{140}\right)\) \(e\left(\frac{409}{840}\right)\) \(e\left(\frac{3}{70}\right)\) \(e\left(\frac{397}{840}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{409}{420}\right)\) \(e\left(\frac{167}{168}\right)\) \(e\left(\frac{89}{168}\right)\)
\(\chi_{8041}(410,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{140}\right)\) \(e\left(\frac{551}{840}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{83}{840}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{1}{140}\right)\) \(e\left(\frac{131}{420}\right)\) \(e\left(\frac{73}{168}\right)\) \(e\left(\frac{55}{168}\right)\)
\(\chi_{8041}(427,\cdot)\) \(1\) \(1\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{167}{840}\right)\) \(e\left(\frac{69}{70}\right)\) \(e\left(\frac{731}{840}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{137}{140}\right)\) \(e\left(\frac{167}{420}\right)\) \(e\left(\frac{145}{168}\right)\) \(e\left(\frac{31}{168}\right)\)
\(\chi_{8041}(444,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{140}\right)\) \(e\left(\frac{799}{840}\right)\) \(e\left(\frac{43}{70}\right)\) \(e\left(\frac{67}{840}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{83}{120}\right)\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{379}{420}\right)\) \(e\left(\frac{65}{168}\right)\) \(e\left(\frac{95}{168}\right)\)
\(\chi_{8041}(576,\cdot)\) \(1\) \(1\) \(e\left(\frac{123}{140}\right)\) \(e\left(\frac{739}{840}\right)\) \(e\left(\frac{53}{70}\right)\) \(e\left(\frac{247}{840}\right)\) \(e\left(\frac{91}{120}\right)\) \(e\left(\frac{23}{120}\right)\) \(e\left(\frac{89}{140}\right)\) \(e\left(\frac{319}{420}\right)\) \(e\left(\frac{29}{168}\right)\) \(e\left(\frac{107}{168}\right)\)
\(\chi_{8041}(597,\cdot)\) \(1\) \(1\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{311}{840}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{803}{840}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{121}{140}\right)\) \(e\left(\frac{311}{420}\right)\) \(e\left(\frac{97}{168}\right)\) \(e\left(\frac{103}{168}\right)\)
\(\chi_{8041}(654,\cdot)\) \(1\) \(1\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{733}{840}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{769}{840}\right)\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{41}{120}\right)\) \(e\left(\frac{43}{140}\right)\) \(e\left(\frac{313}{420}\right)\) \(e\left(\frac{59}{168}\right)\) \(e\left(\frac{125}{168}\right)\)
\(\chi_{8041}(740,\cdot)\) \(1\) \(1\) \(e\left(\frac{117}{140}\right)\) \(e\left(\frac{481}{840}\right)\) \(e\left(\frac{47}{70}\right)\) \(e\left(\frac{13}{840}\right)\) \(e\left(\frac{49}{120}\right)\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{71}{140}\right)\) \(e\left(\frac{61}{420}\right)\) \(e\left(\frac{143}{168}\right)\) \(e\left(\frac{41}{168}\right)\)
\(\chi_{8041}(746,\cdot)\) \(1\) \(1\) \(e\left(\frac{79}{140}\right)\) \(e\left(\frac{667}{840}\right)\) \(e\left(\frac{9}{70}\right)\) \(e\left(\frac{631}{840}\right)\) \(e\left(\frac{43}{120}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{97}{140}\right)\) \(e\left(\frac{247}{420}\right)\) \(e\left(\frac{53}{168}\right)\) \(e\left(\frac{155}{168}\right)\)
\(\chi_{8041}(784,\cdot)\) \(1\) \(1\) \(e\left(\frac{67}{140}\right)\) \(e\left(\frac{431}{840}\right)\) \(e\left(\frac{67}{70}\right)\) \(e\left(\frac{443}{840}\right)\) \(e\left(\frac{119}{120}\right)\) \(e\left(\frac{67}{120}\right)\) \(e\left(\frac{61}{140}\right)\) \(e\left(\frac{11}{420}\right)\) \(e\left(\frac{1}{168}\right)\) \(e\left(\frac{79}{168}\right)\)
\(\chi_{8041}(797,\cdot)\) \(1\) \(1\) \(e\left(\frac{131}{140}\right)\) \(e\left(\frac{803}{840}\right)\) \(e\left(\frac{61}{70}\right)\) \(e\left(\frac{839}{840}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{113}{140}\right)\) \(e\left(\frac{383}{420}\right)\) \(e\left(\frac{157}{168}\right)\) \(e\left(\frac{139}{168}\right)\)
\(\chi_{8041}(841,\cdot)\) \(1\) \(1\) \(e\left(\frac{121}{140}\right)\) \(e\left(\frac{653}{840}\right)\) \(e\left(\frac{51}{70}\right)\) \(e\left(\frac{449}{840}\right)\) \(e\left(\frac{77}{120}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{83}{140}\right)\) \(e\left(\frac{233}{420}\right)\) \(e\left(\frac{67}{168}\right)\) \(e\left(\frac{85}{168}\right)\)
\(\chi_{8041}(916,\cdot)\) \(1\) \(1\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{451}{840}\right)\) \(e\left(\frac{17}{70}\right)\) \(e\left(\frac{103}{840}\right)\) \(e\left(\frac{19}{120}\right)\) \(e\left(\frac{47}{120}\right)\) \(e\left(\frac{121}{140}\right)\) \(e\left(\frac{31}{420}\right)\) \(e\left(\frac{125}{168}\right)\) \(e\left(\frac{131}{168}\right)\)
\(\chi_{8041}(927,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{140}\right)\) \(e\left(\frac{401}{840}\right)\) \(e\left(\frac{37}{70}\right)\) \(e\left(\frac{533}{840}\right)\) \(e\left(\frac{89}{120}\right)\) \(e\left(\frac{37}{120}\right)\) \(e\left(\frac{111}{140}\right)\) \(e\left(\frac{401}{420}\right)\) \(e\left(\frac{151}{168}\right)\) \(e\left(\frac{1}{168}\right)\)
\(\chi_{8041}(960,\cdot)\) \(1\) \(1\) \(e\left(\frac{57}{140}\right)\) \(e\left(\frac{421}{840}\right)\) \(e\left(\frac{57}{70}\right)\) \(e\left(\frac{193}{840}\right)\) \(e\left(\frac{109}{120}\right)\) \(e\left(\frac{17}{120}\right)\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{1}{420}\right)\) \(e\left(\frac{107}{168}\right)\) \(e\left(\frac{53}{168}\right)\)
\(\chi_{8041}(961,\cdot)\) \(1\) \(1\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{289}{840}\right)\) \(e\left(\frac{23}{70}\right)\) \(e\left(\frac{757}{840}\right)\) \(e\left(\frac{1}{120}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{139}{140}\right)\) \(e\left(\frac{289}{420}\right)\) \(e\left(\frac{95}{168}\right)\) \(e\left(\frac{113}{168}\right)\)
\(\chi_{8041}(971,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{140}\right)\) \(e\left(\frac{391}{840}\right)\) \(e\left(\frac{27}{70}\right)\) \(e\left(\frac{283}{840}\right)\) \(e\left(\frac{79}{120}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{81}{140}\right)\) \(e\left(\frac{391}{420}\right)\) \(e\left(\frac{89}{168}\right)\) \(e\left(\frac{143}{168}\right)\)
\(\chi_{8041}(977,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{140}\right)\) \(e\left(\frac{197}{840}\right)\) \(e\left(\frac{29}{70}\right)\) \(e\left(\frac{641}{840}\right)\) \(e\left(\frac{53}{120}\right)\) \(e\left(\frac{49}{120}\right)\) \(e\left(\frac{87}{140}\right)\) \(e\left(\frac{197}{420}\right)\) \(e\left(\frac{163}{168}\right)\) \(e\left(\frac{109}{168}\right)\)
\(\chi_{8041}(984,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{140}\right)\) \(e\left(\frac{563}{840}\right)\) \(e\left(\frac{31}{70}\right)\) \(e\left(\frac{719}{840}\right)\) \(e\left(\frac{107}{120}\right)\) \(e\left(\frac{31}{120}\right)\) \(e\left(\frac{93}{140}\right)\) \(e\left(\frac{143}{420}\right)\) \(e\left(\frac{13}{168}\right)\) \(e\left(\frac{19}{168}\right)\)
\(\chi_{8041}(1131,\cdot)\) \(1\) \(1\) \(e\left(\frac{129}{140}\right)\) \(e\left(\frac{577}{840}\right)\) \(e\left(\frac{59}{70}\right)\) \(e\left(\frac{61}{840}\right)\) \(e\left(\frac{73}{120}\right)\) \(e\left(\frac{29}{120}\right)\) \(e\left(\frac{107}{140}\right)\) \(e\left(\frac{157}{420}\right)\) \(e\left(\frac{167}{168}\right)\) \(e\left(\frac{89}{168}\right)\)