sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8041, base_ring=CyclotomicField(560))
M = H._module
chi = DirichletCharacter(H, M([112,105,520]))
pari:[g,chi] = znchar(Mod(180,8041))
| Modulus: | \(8041\) | |
| Conductor: | \(8041\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(560\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8041}(27,\cdot)\)
\(\chi_{8041}(75,\cdot)\)
\(\chi_{8041}(82,\cdot)\)
\(\chi_{8041}(108,\cdot)\)
\(\chi_{8041}(113,\cdot)\)
\(\chi_{8041}(125,\cdot)\)
\(\chi_{8041}(180,\cdot)\)
\(\chi_{8041}(328,\cdot)\)
\(\chi_{8041}(333,\cdot)\)
\(\chi_{8041}(346,\cdot)\)
\(\chi_{8041}(432,\cdot)\)
\(\chi_{8041}(500,\cdot)\)
\(\chi_{8041}(555,\cdot)\)
\(\chi_{8041}(581,\cdot)\)
\(\chi_{8041}(598,\cdot)\)
\(\chi_{8041}(641,\cdot)\)
\(\chi_{8041}(653,\cdot)\)
\(\chi_{8041}(720,\cdot)\)
\(\chi_{8041}(753,\cdot)\)
\(\chi_{8041}(796,\cdot)\)
\(\chi_{8041}(806,\cdot)\)
\(\chi_{8041}(819,\cdot)\)
\(\chi_{8041}(839,\cdot)\)
\(\chi_{8041}(856,\cdot)\)
\(\chi_{8041}(862,\cdot)\)
\(\chi_{8041}(911,\cdot)\)
\(\chi_{8041}(1059,\cdot)\)
\(\chi_{8041}(1083,\cdot)\)
\(\chi_{8041}(1193,\cdot)\)
\(\chi_{8041}(1236,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6580,2366,562)\) → \((e\left(\frac{1}{5}\right),e\left(\frac{3}{16}\right),e\left(\frac{13}{14}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 8041 }(180, a) \) |
\(1\) | \(1\) | \(e\left(\frac{251}{280}\right)\) | \(e\left(\frac{401}{560}\right)\) | \(e\left(\frac{111}{140}\right)\) | \(e\left(\frac{533}{560}\right)\) | \(e\left(\frac{49}{80}\right)\) | \(e\left(\frac{77}{80}\right)\) | \(e\left(\frac{193}{280}\right)\) | \(e\left(\frac{121}{280}\right)\) | \(e\left(\frac{95}{112}\right)\) | \(e\left(\frac{57}{112}\right)\) |
sage:chi.jacobi_sum(n)