sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8041, base_ring=CyclotomicField(560))
M = H._module
chi = DirichletCharacter(H, M([504,385,240]))
pari:[g,chi] = znchar(Mod(1282,8041))
| Modulus: | \(8041\) | |
| Conductor: | \(8041\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(560\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8041}(41,\cdot)\)
\(\chi_{8041}(90,\cdot)\)
\(\chi_{8041}(107,\cdot)\)
\(\chi_{8041}(150,\cdot)\)
\(\chi_{8041}(193,\cdot)\)
\(\chi_{8041}(226,\cdot)\)
\(\chi_{8041}(250,\cdot)\)
\(\chi_{8041}(299,\cdot)\)
\(\chi_{8041}(360,\cdot)\)
\(\chi_{8041}(398,\cdot)\)
\(\chi_{8041}(403,\cdot)\)
\(\chi_{8041}(600,\cdot)\)
\(\chi_{8041}(618,\cdot)\)
\(\chi_{8041}(623,\cdot)\)
\(\chi_{8041}(656,\cdot)\)
\(\chi_{8041}(666,\cdot)\)
\(\chi_{8041}(772,\cdot)\)
\(\chi_{8041}(809,\cdot)\)
\(\chi_{8041}(821,\cdot)\)
\(\chi_{8041}(838,\cdot)\)
\(\chi_{8041}(864,\cdot)\)
\(\chi_{8041}(981,\cdot)\)
\(\chi_{8041}(1030,\cdot)\)
\(\chi_{8041}(1091,\cdot)\)
\(\chi_{8041}(1129,\cdot)\)
\(\chi_{8041}(1196,\cdot)\)
\(\chi_{8041}(1251,\cdot)\)
\(\chi_{8041}(1282,\cdot)\)
\(\chi_{8041}(1306,\cdot)\)
\(\chi_{8041}(1337,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((6580,2366,562)\) → \((e\left(\frac{9}{10}\right),e\left(\frac{11}{16}\right),e\left(\frac{3}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(12\) |
| \( \chi_{ 8041 }(1282, a) \) |
\(1\) | \(1\) | \(e\left(\frac{27}{280}\right)\) | \(e\left(\frac{177}{560}\right)\) | \(e\left(\frac{27}{140}\right)\) | \(e\left(\frac{421}{560}\right)\) | \(e\left(\frac{33}{80}\right)\) | \(e\left(\frac{69}{80}\right)\) | \(e\left(\frac{81}{280}\right)\) | \(e\left(\frac{177}{280}\right)\) | \(e\left(\frac{95}{112}\right)\) | \(e\left(\frac{57}{112}\right)\) |
sage:chi.jacobi_sum(n)