Properties

Label 8041.12
Modulus $8041$
Conductor $731$
Order $336$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8041, base_ring=CyclotomicField(336)) M = H._module chi = DirichletCharacter(H, M([0,273,104]))
 
Copy content pari:[g,chi] = znchar(Mod(12,8041))
 

Basic properties

Modulus: \(8041\)
Conductor: \(731\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(336\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{731}(12,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8041.fk

\(\chi_{8041}(12,\cdot)\) \(\chi_{8041}(177,\cdot)\) \(\chi_{8041}(243,\cdot)\) \(\chi_{8041}(320,\cdot)\) \(\chi_{8041}(364,\cdot)\) \(\chi_{8041}(507,\cdot)\) \(\chi_{8041}(760,\cdot)\) \(\chi_{8041}(793,\cdot)\) \(\chi_{8041}(804,\cdot)\) \(\chi_{8041}(958,\cdot)\) \(\chi_{8041}(980,\cdot)\) \(\chi_{8041}(1431,\cdot)\) \(\chi_{8041}(1508,\cdot)\) \(\chi_{8041}(1574,\cdot)\) \(\chi_{8041}(1695,\cdot)\) \(\chi_{8041}(1706,\cdot)\) \(\chi_{8041}(1739,\cdot)\) \(\chi_{8041}(1882,\cdot)\) \(\chi_{8041}(1926,\cdot)\) \(\chi_{8041}(2047,\cdot)\) \(\chi_{8041}(2069,\cdot)\) \(\chi_{8041}(2135,\cdot)\) \(\chi_{8041}(2179,\cdot)\) \(\chi_{8041}(2256,\cdot)\) \(\chi_{8041}(2377,\cdot)\) \(\chi_{8041}(2454,\cdot)\) \(\chi_{8041}(2608,\cdot)\) \(\chi_{8041}(2641,\cdot)\) \(\chi_{8041}(2696,\cdot)\) \(\chi_{8041}(2828,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{336})$
Fixed field: Number field defined by a degree 336 polynomial (not computed)

Values on generators

\((6580,2366,562)\) → \((1,e\left(\frac{13}{16}\right),e\left(\frac{13}{42}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(12\)
\( \chi_{ 8041 }(12, a) \) \(1\)\(1\)\(e\left(\frac{41}{56}\right)\)\(e\left(\frac{41}{336}\right)\)\(e\left(\frac{13}{28}\right)\)\(e\left(\frac{269}{336}\right)\)\(e\left(\frac{41}{48}\right)\)\(e\left(\frac{37}{48}\right)\)\(e\left(\frac{11}{56}\right)\)\(e\left(\frac{41}{168}\right)\)\(e\left(\frac{179}{336}\right)\)\(e\left(\frac{197}{336}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8041 }(12,a) \;\) at \(\;a = \) e.g. 2