sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8029, base_ring=CyclotomicField(6))
M = H._module
chi = DirichletCharacter(H, M([1,0,0]))
pari:[g,chi] = znchar(Mod(5736,8029))
\(\chi_{8029}(3442,\cdot)\)
\(\chi_{8029}(5736,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((5736,778,4775)\) → \((e\left(\frac{1}{6}\right),1,1)\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(8\) | \(9\) | \(10\) | \(11\) | \(12\) |
| \( \chi_{ 8029 }(5736, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{5}{6}\right)\) |
sage:chi.jacobi_sum(n)