Properties

Label 8007.dd
Modulus $8007$
Conductor $2669$
Order $52$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8007, base_ring=CyclotomicField(52)) M = H._module chi = DirichletCharacter(H, M([0,39,42])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(4,8007)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8007\)
Conductor: \(2669\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(52\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 2669.bp
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{8007}(4,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{45}{52}\right)\) \(1\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{7}{13}\right)\)
\(\chi_{8007}(64,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{31}{52}\right)\) \(1\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{8}{13}\right)\)
\(\chi_{8007}(268,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{15}{52}\right)\) \(1\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{8007}(370,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{3}{52}\right)\) \(1\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{10}{13}\right)\)
\(\chi_{8007}(718,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{9}{52}\right)\) \(1\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{8007}(769,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{25}{52}\right)\) \(1\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{1}{13}\right)\)
\(\chi_{8007}(1024,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{17}{52}\right)\) \(1\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{8007}(1126,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{21}{52}\right)\) \(1\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{5}{13}\right)\)
\(\chi_{8007}(1942,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{37}{52}\right)\) \(1\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{8007}(2002,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{7}{52}\right)\) \(1\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{6}{13}\right)\)
\(\chi_{8007}(2359,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{19}{52}\right)\) \(1\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{7}{13}\right)\)
\(\chi_{8007}(3073,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{35}{52}\right)\) \(1\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{4}{13}\right)\)
\(\chi_{8007}(3124,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{51}{52}\right)\) \(1\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{1}{13}\right)\)
\(\chi_{8007}(3379,\cdot)\) \(1\) \(1\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{43}{52}\right)\) \(1\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{9}{13}\right)\)
\(\chi_{8007}(3481,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{47}{52}\right)\) \(1\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{5}{13}\right)\)
\(\chi_{8007}(4288,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{1}{52}\right)\) \(1\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{8007}(4297,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{11}{52}\right)\) \(1\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{2}{13}\right)\)
\(\chi_{8007}(4696,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{49}{52}\right)\) \(1\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{3}{13}\right)\)
\(\chi_{8007}(5716,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{5}{52}\right)\) \(1\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{8}{13}\right)\)
\(\chi_{8007}(5920,\cdot)\) \(1\) \(1\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{41}{52}\right)\) \(1\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{11}{13}\right)\)
\(\chi_{8007}(6022,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{29}{52}\right)\) \(1\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{10}{13}\right)\)
\(\chi_{8007}(6643,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{27}{52}\right)\) \(1\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{12}{13}\right)\)
\(\chi_{8007}(7051,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{23}{52}\right)\) \(1\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{3}{13}\right)\)
\(\chi_{8007}(7654,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{33}{52}\right)\) \(1\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{6}{13}\right)\)