Properties

Label 8007.bc
Modulus $8007$
Conductor $8007$
Order $8$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8007, base_ring=CyclotomicField(8)) M = H._module chi = DirichletCharacter(H, M([4,3,6])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(185,8007)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(8007\)
Conductor: \(8007\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(8\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: Number field defined by a degree 8 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(7\) \(8\) \(10\) \(11\) \(13\) \(14\) \(16\)
\(\chi_{8007}(185,\cdot)\) \(1\) \(1\) \(-1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(-1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(1\) \(e\left(\frac{7}{8}\right)\) \(1\)
\(\chi_{8007}(1385,\cdot)\) \(1\) \(1\) \(-1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(-1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(1\) \(e\left(\frac{1}{8}\right)\) \(1\)
\(\chi_{8007}(3011,\cdot)\) \(1\) \(1\) \(-1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{7}{8}\right)\) \(-1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{8}\right)\) \(1\) \(e\left(\frac{3}{8}\right)\) \(1\)
\(\chi_{8007}(6095,\cdot)\) \(1\) \(1\) \(-1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{8}\right)\) \(-1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{3}{8}\right)\) \(1\) \(e\left(\frac{5}{8}\right)\) \(1\)