Properties

Label 8007.583
Modulus $8007$
Conductor $2669$
Order $208$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8007, base_ring=CyclotomicField(208)) M = H._module chi = DirichletCharacter(H, M([0,65,116]))
 
Copy content pari:[g,chi] = znchar(Mod(583,8007))
 

Basic properties

Modulus: \(8007\)
Conductor: \(2669\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(208\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2669}(583,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8007.eq

\(\chi_{8007}(316,\cdot)\) \(\chi_{8007}(337,\cdot)\) \(\chi_{8007}(346,\cdot)\) \(\chi_{8007}(379,\cdot)\) \(\chi_{8007}(430,\cdot)\) \(\chi_{8007}(439,\cdot)\) \(\chi_{8007}(448,\cdot)\) \(\chi_{8007}(583,\cdot)\) \(\chi_{8007}(673,\cdot)\) \(\chi_{8007}(826,\cdot)\) \(\chi_{8007}(844,\cdot)\) \(\chi_{8007}(877,\cdot)\) \(\chi_{8007}(913,\cdot)\) \(\chi_{8007}(940,\cdot)\) \(\chi_{8007}(949,\cdot)\) \(\chi_{8007}(1153,\cdot)\) \(\chi_{8007}(1285,\cdot)\) \(\chi_{8007}(1315,\cdot)\) \(\chi_{8007}(1321,\cdot)\) \(\chi_{8007}(1372,\cdot)\) \(\chi_{8007}(1405,\cdot)\) \(\chi_{8007}(1525,\cdot)\) \(\chi_{8007}(1876,\cdot)\) \(\chi_{8007}(1882,\cdot)\) \(\chi_{8007}(2119,\cdot)\) \(\chi_{8007}(2200,\cdot)\) \(\chi_{8007}(2326,\cdot)\) \(\chi_{8007}(2434,\cdot)\) \(\chi_{8007}(2458,\cdot)\) \(\chi_{8007}(2557,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{208})$
Fixed field: Number field defined by a degree 208 polynomial (not computed)

Values on generators

\((5339,1414,7855)\) → \((1,e\left(\frac{5}{16}\right),e\left(\frac{29}{52}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 8007 }(583, a) \) \(1\)\(1\)\(e\left(\frac{1}{104}\right)\)\(e\left(\frac{1}{52}\right)\)\(e\left(\frac{25}{208}\right)\)\(e\left(\frac{87}{208}\right)\)\(e\left(\frac{3}{104}\right)\)\(e\left(\frac{27}{208}\right)\)\(e\left(\frac{167}{208}\right)\)\(-i\)\(e\left(\frac{89}{208}\right)\)\(e\left(\frac{1}{26}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8007 }(583,a) \;\) at \(\;a = \) e.g. 2