![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8007, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([26,26,51]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8007, base_ring=CyclotomicField(52))
M = H._module
chi = DirichletCharacter(H, M([26,26,51]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(4028,8007))
        pari:[g,chi] = znchar(Mod(4028,8007))
         
     
    
  
   | Modulus: | \(8007\) |  | 
   | Conductor: | \(8007\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(52\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{8007}(1070,\cdot)\)
  \(\chi_{8007}(1478,\cdot)\)
  \(\chi_{8007}(1529,\cdot)\)
  \(\chi_{8007}(1682,\cdot)\)
  \(\chi_{8007}(1886,\cdot)\)
  \(\chi_{8007}(2039,\cdot)\)
  \(\chi_{8007}(2243,\cdot)\)
  \(\chi_{8007}(2396,\cdot)\)
  \(\chi_{8007}(2447,\cdot)\)
  \(\chi_{8007}(2855,\cdot)\)
  \(\chi_{8007}(4028,\cdot)\)
  \(\chi_{8007}(4232,\cdot)\)
  \(\chi_{8007}(4742,\cdot)\)
  \(\chi_{8007}(4844,\cdot)\)
  \(\chi_{8007}(4946,\cdot)\)
  \(\chi_{8007}(5660,\cdot)\)
  \(\chi_{8007}(5711,\cdot)\)
  \(\chi_{8007}(6221,\cdot)\)
  \(\chi_{8007}(6272,\cdot)\)
  \(\chi_{8007}(6986,\cdot)\)
  \(\chi_{8007}(7088,\cdot)\)
  \(\chi_{8007}(7190,\cdot)\)
  \(\chi_{8007}(7700,\cdot)\)
  \(\chi_{8007}(7904,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((5339,1414,7855)\) → \((-1,-1,e\left(\frac{51}{52}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) | 
    
    
      | \( \chi_{ 8007 }(4028, a) \) | \(1\) | \(1\) | \(e\left(\frac{41}{52}\right)\) | \(e\left(\frac{15}{26}\right)\) | \(e\left(\frac{51}{52}\right)\) | \(e\left(\frac{35}{52}\right)\) | \(e\left(\frac{19}{52}\right)\) | \(e\left(\frac{10}{13}\right)\) | \(e\left(\frac{6}{13}\right)\) | \(-1\) | \(e\left(\frac{6}{13}\right)\) | \(e\left(\frac{2}{13}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)