sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8004, base_ring=CyclotomicField(154))
M = H._module
chi = DirichletCharacter(H, M([77,77,119,66]))
pari:[g,chi] = znchar(Mod(935,8004))
| Modulus: | \(8004\) | |
| Conductor: | \(8004\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(154\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8004}(83,\cdot)\)
\(\chi_{8004}(107,\cdot)\)
\(\chi_{8004}(227,\cdot)\)
\(\chi_{8004}(431,\cdot)\)
\(\chi_{8004}(779,\cdot)\)
\(\chi_{8004}(803,\cdot)\)
\(\chi_{8004}(935,\cdot)\)
\(\chi_{8004}(1031,\cdot)\)
\(\chi_{8004}(1631,\cdot)\)
\(\chi_{8004}(1763,\cdot)\)
\(\chi_{8004}(1847,\cdot)\)
\(\chi_{8004}(2075,\cdot)\)
\(\chi_{8004}(2195,\cdot)\)
\(\chi_{8004}(2315,\cdot)\)
\(\chi_{8004}(2459,\cdot)\)
\(\chi_{8004}(2675,\cdot)\)
\(\chi_{8004}(2771,\cdot)\)
\(\chi_{8004}(2867,\cdot)\)
\(\chi_{8004}(3011,\cdot)\)
\(\chi_{8004}(3023,\cdot)\)
\(\chi_{8004}(3119,\cdot)\)
\(\chi_{8004}(3239,\cdot)\)
\(\chi_{8004}(3467,\cdot)\)
\(\chi_{8004}(3503,\cdot)\)
\(\chi_{8004}(3563,\cdot)\)
\(\chi_{8004}(3815,\cdot)\)
\(\chi_{8004}(3851,\cdot)\)
\(\chi_{8004}(4055,\cdot)\)
\(\chi_{8004}(4067,\cdot)\)
\(\chi_{8004}(4283,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4003,2669,3133,553)\) → \((-1,-1,e\left(\frac{17}{22}\right),e\left(\frac{3}{7}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(31\) | \(35\) | \(37\) |
| \( \chi_{ 8004 }(935, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{54}{77}\right)\) | \(e\left(\frac{25}{77}\right)\) | \(e\left(\frac{103}{154}\right)\) | \(e\left(\frac{41}{77}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{73}{77}\right)\) | \(e\left(\frac{31}{77}\right)\) | \(e\left(\frac{87}{154}\right)\) | \(e\left(\frac{2}{77}\right)\) | \(e\left(\frac{79}{154}\right)\) |
sage:chi.jacobi_sum(n)