Properties

Label 8004.61
Modulus $8004$
Conductor $667$
Order $308$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8004, base_ring=CyclotomicField(308)) M = H._module chi = DirichletCharacter(H, M([0,0,238,55]))
 
Copy content pari:[g,chi] = znchar(Mod(61,8004))
 

Basic properties

Modulus: \(8004\)
Conductor: \(667\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(308\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{667}(61,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8004.do

\(\chi_{8004}(37,\cdot)\) \(\chi_{8004}(61,\cdot)\) \(\chi_{8004}(97,\cdot)\) \(\chi_{8004}(205,\cdot)\) \(\chi_{8004}(217,\cdot)\) \(\chi_{8004}(337,\cdot)\) \(\chi_{8004}(385,\cdot)\) \(\chi_{8004}(421,\cdot)\) \(\chi_{8004}(433,\cdot)\) \(\chi_{8004}(649,\cdot)\) \(\chi_{8004}(733,\cdot)\) \(\chi_{8004}(757,\cdot)\) \(\chi_{8004}(769,\cdot)\) \(\chi_{8004}(793,\cdot)\) \(\chi_{8004}(889,\cdot)\) \(\chi_{8004}(925,\cdot)\) \(\chi_{8004}(1033,\cdot)\) \(\chi_{8004}(1141,\cdot)\) \(\chi_{8004}(1249,\cdot)\) \(\chi_{8004}(1261,\cdot)\) \(\chi_{8004}(1345,\cdot)\) \(\chi_{8004}(1477,\cdot)\) \(\chi_{8004}(1489,\cdot)\) \(\chi_{8004}(1585,\cdot)\) \(\chi_{8004}(1597,\cdot)\) \(\chi_{8004}(1621,\cdot)\) \(\chi_{8004}(1693,\cdot)\) \(\chi_{8004}(1801,\cdot)\) \(\chi_{8004}(1813,\cdot)\) \(\chi_{8004}(1837,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{308})$
Fixed field: Number field defined by a degree 308 polynomial (not computed)

Values on generators

\((4003,2669,3133,553)\) → \((1,1,e\left(\frac{17}{22}\right),e\left(\frac{5}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(25\)\(31\)\(35\)\(37\)
\( \chi_{ 8004 }(61, a) \) \(1\)\(1\)\(e\left(\frac{54}{77}\right)\)\(e\left(\frac{127}{154}\right)\)\(e\left(\frac{129}{308}\right)\)\(e\left(\frac{5}{154}\right)\)\(e\left(\frac{7}{44}\right)\)\(e\left(\frac{61}{308}\right)\)\(e\left(\frac{31}{77}\right)\)\(e\left(\frac{251}{308}\right)\)\(e\left(\frac{81}{154}\right)\)\(e\left(\frac{235}{308}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8004 }(61,a) \;\) at \(\;a = \) e.g. 2