Properties

Label 8004.4987
Modulus $8004$
Conductor $2668$
Order $22$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8004, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([11,0,15,11]))
 
Copy content pari:[g,chi] = znchar(Mod(4987,8004))
 

Basic properties

Modulus: \(8004\)
Conductor: \(2668\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2668}(2319,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8004.by

\(\chi_{8004}(1855,\cdot)\) \(\chi_{8004}(2551,\cdot)\) \(\chi_{8004}(3595,\cdot)\) \(\chi_{8004}(3943,\cdot)\) \(\chi_{8004}(4987,\cdot)\) \(\chi_{8004}(6031,\cdot)\) \(\chi_{8004}(6727,\cdot)\) \(\chi_{8004}(7075,\cdot)\) \(\chi_{8004}(7423,\cdot)\) \(\chi_{8004}(7771,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\((4003,2669,3133,553)\) → \((-1,1,e\left(\frac{15}{22}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(25\)\(31\)\(35\)\(37\)
\( \chi_{ 8004 }(4987, a) \) \(1\)\(1\)\(e\left(\frac{15}{22}\right)\)\(e\left(\frac{5}{11}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{6}{11}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{4}{11}\right)\)\(e\left(\frac{1}{11}\right)\)\(e\left(\frac{3}{22}\right)\)\(e\left(\frac{9}{11}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8004 }(4987,a) \;\) at \(\;a = \) e.g. 2