Properties

Label 8004.3659
Modulus $8004$
Conductor $8004$
Order $154$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8004, base_ring=CyclotomicField(154)) M = H._module chi = DirichletCharacter(H, M([77,77,14,121]))
 
Copy content pari:[g,chi] = znchar(Mod(3659,8004))
 

Basic properties

Modulus: \(8004\)
Conductor: \(8004\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(154\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8004.cv

\(\chi_{8004}(35,\cdot)\) \(\chi_{8004}(71,\cdot)\) \(\chi_{8004}(167,\cdot)\) \(\chi_{8004}(179,\cdot)\) \(\chi_{8004}(515,\cdot)\) \(\chi_{8004}(647,\cdot)\) \(\chi_{8004}(671,\cdot)\) \(\chi_{8004}(731,\cdot)\) \(\chi_{8004}(767,\cdot)\) \(\chi_{8004}(863,\cdot)\) \(\chi_{8004}(995,\cdot)\) \(\chi_{8004}(1223,\cdot)\) \(\chi_{8004}(1343,\cdot)\) \(\chi_{8004}(1559,\cdot)\) \(\chi_{8004}(1691,\cdot)\) \(\chi_{8004}(1715,\cdot)\) \(\chi_{8004}(1775,\cdot)\) \(\chi_{8004}(2063,\cdot)\) \(\chi_{8004}(2267,\cdot)\) \(\chi_{8004}(2387,\cdot)\) \(\chi_{8004}(2603,\cdot)\) \(\chi_{8004}(2615,\cdot)\) \(\chi_{8004}(2819,\cdot)\) \(\chi_{8004}(2855,\cdot)\) \(\chi_{8004}(3107,\cdot)\) \(\chi_{8004}(3167,\cdot)\) \(\chi_{8004}(3203,\cdot)\) \(\chi_{8004}(3431,\cdot)\) \(\chi_{8004}(3551,\cdot)\) \(\chi_{8004}(3647,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{77})$
Fixed field: Number field defined by a degree 154 polynomial (not computed)

Values on generators

\((4003,2669,3133,553)\) → \((-1,-1,e\left(\frac{1}{11}\right),e\left(\frac{11}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(25\)\(31\)\(35\)\(37\)
\( \chi_{ 8004 }(3659, a) \) \(1\)\(1\)\(e\left(\frac{135}{154}\right)\)\(e\left(\frac{101}{154}\right)\)\(e\left(\frac{71}{154}\right)\)\(e\left(\frac{32}{77}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{72}{77}\right)\)\(e\left(\frac{58}{77}\right)\)\(e\left(\frac{64}{77}\right)\)\(e\left(\frac{41}{77}\right)\)\(e\left(\frac{41}{154}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8004 }(3659,a) \;\) at \(\;a = \) e.g. 2