sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(8004, base_ring=CyclotomicField(154))
M = H._module
chi = DirichletCharacter(H, M([77,77,84,121]))
pari:[g,chi] = znchar(Mod(179,8004))
| Modulus: | \(8004\) | |
| Conductor: | \(8004\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(154\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{8004}(35,\cdot)\)
\(\chi_{8004}(71,\cdot)\)
\(\chi_{8004}(167,\cdot)\)
\(\chi_{8004}(179,\cdot)\)
\(\chi_{8004}(515,\cdot)\)
\(\chi_{8004}(647,\cdot)\)
\(\chi_{8004}(671,\cdot)\)
\(\chi_{8004}(731,\cdot)\)
\(\chi_{8004}(767,\cdot)\)
\(\chi_{8004}(863,\cdot)\)
\(\chi_{8004}(995,\cdot)\)
\(\chi_{8004}(1223,\cdot)\)
\(\chi_{8004}(1343,\cdot)\)
\(\chi_{8004}(1559,\cdot)\)
\(\chi_{8004}(1691,\cdot)\)
\(\chi_{8004}(1715,\cdot)\)
\(\chi_{8004}(1775,\cdot)\)
\(\chi_{8004}(2063,\cdot)\)
\(\chi_{8004}(2267,\cdot)\)
\(\chi_{8004}(2387,\cdot)\)
\(\chi_{8004}(2603,\cdot)\)
\(\chi_{8004}(2615,\cdot)\)
\(\chi_{8004}(2819,\cdot)\)
\(\chi_{8004}(2855,\cdot)\)
\(\chi_{8004}(3107,\cdot)\)
\(\chi_{8004}(3167,\cdot)\)
\(\chi_{8004}(3203,\cdot)\)
\(\chi_{8004}(3431,\cdot)\)
\(\chi_{8004}(3551,\cdot)\)
\(\chi_{8004}(3647,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4003,2669,3133,553)\) → \((-1,-1,e\left(\frac{6}{11}\right),e\left(\frac{11}{14}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(31\) | \(35\) | \(37\) |
| \( \chi_{ 8004 }(179, a) \) |
\(1\) | \(1\) | \(e\left(\frac{51}{154}\right)\) | \(e\left(\frac{45}{154}\right)\) | \(e\left(\frac{85}{154}\right)\) | \(e\left(\frac{60}{77}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{58}{77}\right)\) | \(e\left(\frac{51}{77}\right)\) | \(e\left(\frac{43}{77}\right)\) | \(e\left(\frac{48}{77}\right)\) | \(e\left(\frac{125}{154}\right)\) |
sage:chi.jacobi_sum(n)