Properties

Label 8004.1627
Modulus $8004$
Conductor $2668$
Order $308$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8004, base_ring=CyclotomicField(308)) M = H._module chi = DirichletCharacter(H, M([154,0,98,55]))
 
Copy content pari:[g,chi] = znchar(Mod(1627,8004))
 

Basic properties

Modulus: \(8004\)
Conductor: \(2668\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(308\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2668}(1627,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8004.dr

\(\chi_{8004}(19,\cdot)\) \(\chi_{8004}(43,\cdot)\) \(\chi_{8004}(79,\cdot)\) \(\chi_{8004}(235,\cdot)\) \(\chi_{8004}(247,\cdot)\) \(\chi_{8004}(379,\cdot)\) \(\chi_{8004}(475,\cdot)\) \(\chi_{8004}(511,\cdot)\) \(\chi_{8004}(559,\cdot)\) \(\chi_{8004}(595,\cdot)\) \(\chi_{8004}(619,\cdot)\) \(\chi_{8004}(727,\cdot)\) \(\chi_{8004}(751,\cdot)\) \(\chi_{8004}(907,\cdot)\) \(\chi_{8004}(931,\cdot)\) \(\chi_{8004}(1063,\cdot)\) \(\chi_{8004}(1075,\cdot)\) \(\chi_{8004}(1123,\cdot)\) \(\chi_{8004}(1171,\cdot)\) \(\chi_{8004}(1207,\cdot)\) \(\chi_{8004}(1279,\cdot)\) \(\chi_{8004}(1303,\cdot)\) \(\chi_{8004}(1423,\cdot)\) \(\chi_{8004}(1447,\cdot)\) \(\chi_{8004}(1555,\cdot)\) \(\chi_{8004}(1627,\cdot)\) \(\chi_{8004}(1663,\cdot)\) \(\chi_{8004}(1759,\cdot)\) \(\chi_{8004}(1903,\cdot)\) \(\chi_{8004}(1951,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{308})$
Fixed field: Number field defined by a degree 308 polynomial (not computed)

Values on generators

\((4003,2669,3133,553)\) → \((-1,1,e\left(\frac{7}{22}\right),e\left(\frac{5}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(25\)\(31\)\(35\)\(37\)
\( \chi_{ 8004 }(1627, a) \) \(-1\)\(1\)\(e\left(\frac{19}{77}\right)\)\(e\left(\frac{53}{77}\right)\)\(e\left(\frac{255}{308}\right)\)\(e\left(\frac{103}{154}\right)\)\(e\left(\frac{43}{44}\right)\)\(e\left(\frac{271}{308}\right)\)\(e\left(\frac{38}{77}\right)\)\(e\left(\frac{181}{308}\right)\)\(e\left(\frac{72}{77}\right)\)\(e\left(\frac{67}{308}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8004 }(1627,a) \;\) at \(\;a = \) e.g. 2