Properties

Label 8004.1445
Modulus $8004$
Conductor $2001$
Order $154$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8004, base_ring=CyclotomicField(154)) M = H._module chi = DirichletCharacter(H, M([0,77,105,44]))
 
Copy content pari:[g,chi] = znchar(Mod(1445,8004))
 

Basic properties

Modulus: \(8004\)
Conductor: \(2001\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(154\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{2001}(1445,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8004.df

\(\chi_{8004}(53,\cdot)\) \(\chi_{8004}(65,\cdot)\) \(\chi_{8004}(281,\cdot)\) \(\chi_{8004}(401,\cdot)\) \(\chi_{8004}(605,\cdot)\) \(\chi_{8004}(893,\cdot)\) \(\chi_{8004}(953,\cdot)\) \(\chi_{8004}(977,\cdot)\) \(\chi_{8004}(1109,\cdot)\) \(\chi_{8004}(1325,\cdot)\) \(\chi_{8004}(1445,\cdot)\) \(\chi_{8004}(1673,\cdot)\) \(\chi_{8004}(1805,\cdot)\) \(\chi_{8004}(1901,\cdot)\) \(\chi_{8004}(1937,\cdot)\) \(\chi_{8004}(1997,\cdot)\) \(\chi_{8004}(2021,\cdot)\) \(\chi_{8004}(2153,\cdot)\) \(\chi_{8004}(2489,\cdot)\) \(\chi_{8004}(2501,\cdot)\) \(\chi_{8004}(2597,\cdot)\) \(\chi_{8004}(2633,\cdot)\) \(\chi_{8004}(2849,\cdot)\) \(\chi_{8004}(2981,\cdot)\) \(\chi_{8004}(3041,\cdot)\) \(\chi_{8004}(3185,\cdot)\) \(\chi_{8004}(3329,\cdot)\) \(\chi_{8004}(3533,\cdot)\) \(\chi_{8004}(3641,\cdot)\) \(\chi_{8004}(3677,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{77})$
Fixed field: Number field defined by a degree 154 polynomial (not computed)

Values on generators

\((4003,2669,3133,553)\) → \((1,-1,e\left(\frac{15}{22}\right),e\left(\frac{2}{7}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(25\)\(31\)\(35\)\(37\)
\( \chi_{ 8004 }(1445, a) \) \(1\)\(1\)\(e\left(\frac{36}{77}\right)\)\(e\left(\frac{59}{154}\right)\)\(e\left(\frac{60}{77}\right)\)\(e\left(\frac{53}{77}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{123}{154}\right)\)\(e\left(\frac{72}{77}\right)\)\(e\left(\frac{29}{77}\right)\)\(e\left(\frac{131}{154}\right)\)\(e\left(\frac{27}{154}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8004 }(1445,a) \;\) at \(\;a = \) e.g. 2