Properties

Label 8004.13
Modulus $8004$
Conductor $667$
Order $154$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(8004, base_ring=CyclotomicField(154)) M = H._module chi = DirichletCharacter(H, M([0,0,98,99]))
 
Copy content pari:[g,chi] = znchar(Mod(13,8004))
 

Basic properties

Modulus: \(8004\)
Conductor: \(667\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(154\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{667}(13,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 8004.di

\(\chi_{8004}(13,\cdot)\) \(\chi_{8004}(121,\cdot)\) \(\chi_{8004}(265,\cdot)\) \(\chi_{8004}(325,\cdot)\) \(\chi_{8004}(361,\cdot)\) \(\chi_{8004}(469,\cdot)\) \(\chi_{8004}(673,\cdot)\) \(\chi_{8004}(817,\cdot)\) \(\chi_{8004}(961,\cdot)\) \(\chi_{8004}(1021,\cdot)\) \(\chi_{8004}(1153,\cdot)\) \(\chi_{8004}(1369,\cdot)\) \(\chi_{8004}(1405,\cdot)\) \(\chi_{8004}(1501,\cdot)\) \(\chi_{8004}(1513,\cdot)\) \(\chi_{8004}(1849,\cdot)\) \(\chi_{8004}(1981,\cdot)\) \(\chi_{8004}(2005,\cdot)\) \(\chi_{8004}(2065,\cdot)\) \(\chi_{8004}(2101,\cdot)\) \(\chi_{8004}(2197,\cdot)\) \(\chi_{8004}(2329,\cdot)\) \(\chi_{8004}(2557,\cdot)\) \(\chi_{8004}(2677,\cdot)\) \(\chi_{8004}(2893,\cdot)\) \(\chi_{8004}(3025,\cdot)\) \(\chi_{8004}(3049,\cdot)\) \(\chi_{8004}(3109,\cdot)\) \(\chi_{8004}(3397,\cdot)\) \(\chi_{8004}(3601,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{77})$
Fixed field: Number field defined by a degree 154 polynomial (not computed)

Values on generators

\((4003,2669,3133,553)\) → \((1,1,e\left(\frac{7}{11}\right),e\left(\frac{9}{14}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(25\)\(31\)\(35\)\(37\)
\( \chi_{ 8004 }(13, a) \) \(1\)\(1\)\(e\left(\frac{60}{77}\right)\)\(e\left(\frac{62}{77}\right)\)\(e\left(\frac{123}{154}\right)\)\(e\left(\frac{37}{77}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{51}{154}\right)\)\(e\left(\frac{43}{77}\right)\)\(e\left(\frac{71}{154}\right)\)\(e\left(\frac{45}{77}\right)\)\(e\left(\frac{45}{154}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 8004 }(13,a) \;\) at \(\;a = \) e.g. 2