Properties

Label 788.379
Modulus $788$
Conductor $788$
Order $98$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(788, base_ring=CyclotomicField(98)) M = H._module chi = DirichletCharacter(H, M([49,86]))
 
Copy content pari:[g,chi] = znchar(Mod(379,788))
 

Basic properties

Modulus: \(788\)
Conductor: \(788\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(98\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 788.o

\(\chi_{788}(23,\cdot)\) \(\chi_{788}(51,\cdot)\) \(\chi_{788}(59,\cdot)\) \(\chi_{788}(63,\cdot)\) \(\chi_{788}(135,\cdot)\) \(\chi_{788}(171,\cdot)\) \(\chi_{788}(175,\cdot)\) \(\chi_{788}(187,\cdot)\) \(\chi_{788}(231,\cdot)\) \(\chi_{788}(239,\cdot)\) \(\chi_{788}(251,\cdot)\) \(\chi_{788}(267,\cdot)\) \(\chi_{788}(287,\cdot)\) \(\chi_{788}(339,\cdot)\) \(\chi_{788}(347,\cdot)\) \(\chi_{788}(351,\cdot)\) \(\chi_{788}(355,\cdot)\) \(\chi_{788}(379,\cdot)\) \(\chi_{788}(387,\cdot)\) \(\chi_{788}(423,\cdot)\) \(\chi_{788}(431,\cdot)\) \(\chi_{788}(443,\cdot)\) \(\chi_{788}(447,\cdot)\) \(\chi_{788}(455,\cdot)\) \(\chi_{788}(475,\cdot)\) \(\chi_{788}(479,\cdot)\) \(\chi_{788}(495,\cdot)\) \(\chi_{788}(499,\cdot)\) \(\chi_{788}(527,\cdot)\) \(\chi_{788}(587,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{49})$
Fixed field: Number field defined by a degree 98 polynomial

Values on generators

\((395,593)\) → \((-1,e\left(\frac{43}{49}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\( \chi_{ 788 }(379, a) \) \(-1\)\(1\)\(e\left(\frac{33}{98}\right)\)\(e\left(\frac{5}{49}\right)\)\(e\left(\frac{61}{98}\right)\)\(e\left(\frac{33}{49}\right)\)\(e\left(\frac{93}{98}\right)\)\(e\left(\frac{46}{49}\right)\)\(e\left(\frac{43}{98}\right)\)\(e\left(\frac{26}{49}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{47}{49}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 788 }(379,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 788 }(379,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 788 }(379,·),\chi_{ 788 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 788 }(379,·)) \;\) at \(\; a,b = \) e.g. 1,2