sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7865, base_ring=CyclotomicField(44))
M = H._module
chi = DirichletCharacter(H, M([11,2,22]))
pari:[g,chi] = znchar(Mod(7292,7865))
Modulus: | \(7865\) | |
Conductor: | \(7865\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(44\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{7865}(142,\cdot)\)
\(\chi_{7865}(428,\cdot)\)
\(\chi_{7865}(857,\cdot)\)
\(\chi_{7865}(1143,\cdot)\)
\(\chi_{7865}(1858,\cdot)\)
\(\chi_{7865}(2287,\cdot)\)
\(\chi_{7865}(2573,\cdot)\)
\(\chi_{7865}(3002,\cdot)\)
\(\chi_{7865}(3288,\cdot)\)
\(\chi_{7865}(3717,\cdot)\)
\(\chi_{7865}(4003,\cdot)\)
\(\chi_{7865}(4432,\cdot)\)
\(\chi_{7865}(5147,\cdot)\)
\(\chi_{7865}(5433,\cdot)\)
\(\chi_{7865}(5862,\cdot)\)
\(\chi_{7865}(6148,\cdot)\)
\(\chi_{7865}(6577,\cdot)\)
\(\chi_{7865}(6863,\cdot)\)
\(\chi_{7865}(7292,\cdot)\)
\(\chi_{7865}(7578,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3147,3511,1211)\) → \((i,e\left(\frac{1}{22}\right),-1)\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(14\) | \(16\) |
\( \chi_{ 7865 }(7292, a) \) |
\(1\) | \(1\) | \(e\left(\frac{35}{44}\right)\) | \(-i\) | \(e\left(\frac{13}{22}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{3}{44}\right)\) | \(e\left(\frac{17}{44}\right)\) | \(-1\) | \(e\left(\frac{15}{44}\right)\) | \(e\left(\frac{19}{22}\right)\) | \(e\left(\frac{2}{11}\right)\) |
sage:chi.jacobi_sum(n)