Properties

Label 7865.3778
Modulus $7865$
Conductor $715$
Order $20$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7865, base_ring=CyclotomicField(20)) M = H._module chi = DirichletCharacter(H, M([15,8,5]))
 
Copy content pari:[g,chi] = znchar(Mod(3778,7865))
 

Basic properties

Modulus: \(7865\)
Conductor: \(715\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(20\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{715}(203,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7865.bz

\(\chi_{7865}(3518,\cdot)\) \(\chi_{7865}(3778,\cdot)\) \(\chi_{7865}(4558,\cdot)\) \(\chi_{7865}(4607,\cdot)\) \(\chi_{7865}(4867,\cdot)\) \(\chi_{7865}(5647,\cdot)\) \(\chi_{7865}(6053,\cdot)\) \(\chi_{7865}(7142,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{20})\)
Fixed field: Number field defined by a degree 20 polynomial

Values on generators

\((3147,3511,1211)\) → \((-i,e\left(\frac{2}{5}\right),i)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(12\)\(14\)\(16\)
\( \chi_{ 7865 }(3778, a) \) \(1\)\(1\)\(e\left(\frac{2}{5}\right)\)\(e\left(\frac{9}{20}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{17}{20}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(e\left(\frac{9}{10}\right)\)\(i\)\(e\left(\frac{7}{10}\right)\)\(e\left(\frac{3}{5}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7865 }(3778,a) \;\) at \(\;a = \) e.g. 2