sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7865, base_ring=CyclotomicField(660))
M = H._module
chi = DirichletCharacter(H, M([330,378,385]))
pari:[g,chi] = znchar(Mod(349,7865))
Modulus: | \(7865\) | |
Conductor: | \(7865\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(660\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{7865}(19,\cdot)\)
\(\chi_{7865}(24,\cdot)\)
\(\chi_{7865}(84,\cdot)\)
\(\chi_{7865}(149,\cdot)\)
\(\chi_{7865}(184,\cdot)\)
\(\chi_{7865}(189,\cdot)\)
\(\chi_{7865}(249,\cdot)\)
\(\chi_{7865}(314,\cdot)\)
\(\chi_{7865}(349,\cdot)\)
\(\chi_{7865}(409,\cdot)\)
\(\chi_{7865}(414,\cdot)\)
\(\chi_{7865}(479,\cdot)\)
\(\chi_{7865}(514,\cdot)\)
\(\chi_{7865}(574,\cdot)\)
\(\chi_{7865}(579,\cdot)\)
\(\chi_{7865}(644,\cdot)\)
\(\chi_{7865}(734,\cdot)\)
\(\chi_{7865}(739,\cdot)\)
\(\chi_{7865}(799,\cdot)\)
\(\chi_{7865}(864,\cdot)\)
\(\chi_{7865}(899,\cdot)\)
\(\chi_{7865}(904,\cdot)\)
\(\chi_{7865}(964,\cdot)\)
\(\chi_{7865}(1029,\cdot)\)
\(\chi_{7865}(1064,\cdot)\)
\(\chi_{7865}(1124,\cdot)\)
\(\chi_{7865}(1194,\cdot)\)
\(\chi_{7865}(1229,\cdot)\)
\(\chi_{7865}(1289,\cdot)\)
\(\chi_{7865}(1294,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((3147,3511,1211)\) → \((-1,e\left(\frac{63}{110}\right),e\left(\frac{7}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(12\) | \(14\) | \(16\) |
\( \chi_{ 7865 }(349, a) \) |
\(1\) | \(1\) | \(e\left(\frac{433}{660}\right)\) | \(e\left(\frac{7}{30}\right)\) | \(e\left(\frac{103}{330}\right)\) | \(e\left(\frac{587}{660}\right)\) | \(e\left(\frac{611}{660}\right)\) | \(e\left(\frac{213}{220}\right)\) | \(e\left(\frac{7}{15}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{32}{55}\right)\) | \(e\left(\frac{103}{165}\right)\) |
sage:chi.jacobi_sum(n)