Properties

Label 7865.2367
Modulus $7865$
Conductor $605$
Order $220$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7865, base_ring=CyclotomicField(220)) M = H._module chi = DirichletCharacter(H, M([55,102,0]))
 
Copy content pari:[g,chi] = znchar(Mod(2367,7865))
 

Basic properties

Modulus: \(7865\)
Conductor: \(605\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(220\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{605}(552,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7865.fe

\(\chi_{7865}(183,\cdot)\) \(\chi_{7865}(222,\cdot)\) \(\chi_{7865}(248,\cdot)\) \(\chi_{7865}(508,\cdot)\) \(\chi_{7865}(547,\cdot)\) \(\chi_{7865}(612,\cdot)\) \(\chi_{7865}(677,\cdot)\) \(\chi_{7865}(833,\cdot)\) \(\chi_{7865}(898,\cdot)\) \(\chi_{7865}(937,\cdot)\) \(\chi_{7865}(963,\cdot)\) \(\chi_{7865}(1223,\cdot)\) \(\chi_{7865}(1262,\cdot)\) \(\chi_{7865}(1327,\cdot)\) \(\chi_{7865}(1392,\cdot)\) \(\chi_{7865}(1548,\cdot)\) \(\chi_{7865}(1652,\cdot)\) \(\chi_{7865}(1678,\cdot)\) \(\chi_{7865}(1938,\cdot)\) \(\chi_{7865}(1977,\cdot)\) \(\chi_{7865}(2042,\cdot)\) \(\chi_{7865}(2107,\cdot)\) \(\chi_{7865}(2263,\cdot)\) \(\chi_{7865}(2328,\cdot)\) \(\chi_{7865}(2367,\cdot)\) \(\chi_{7865}(2692,\cdot)\) \(\chi_{7865}(2757,\cdot)\) \(\chi_{7865}(2822,\cdot)\) \(\chi_{7865}(2978,\cdot)\) \(\chi_{7865}(3043,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{220})$
Fixed field: Number field defined by a degree 220 polynomial (not computed)

Values on generators

\((3147,3511,1211)\) → \((i,e\left(\frac{51}{110}\right),1)\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(12\)\(14\)\(16\)
\( \chi_{ 7865 }(2367, a) \) \(1\)\(1\)\(e\left(\frac{157}{220}\right)\)\(e\left(\frac{11}{20}\right)\)\(e\left(\frac{47}{110}\right)\)\(e\left(\frac{29}{110}\right)\)\(e\left(\frac{109}{220}\right)\)\(e\left(\frac{31}{220}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{43}{44}\right)\)\(e\left(\frac{23}{110}\right)\)\(e\left(\frac{47}{55}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7865 }(2367,a) \;\) at \(\;a = \) e.g. 2