sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(783, base_ring=CyclotomicField(252))
M = H._module
chi = DirichletCharacter(H, M([238,27]))
pari:[g,chi] = znchar(Mod(95,783))
Modulus: | \(783\) | |
Conductor: | \(783\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(252\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{783}(2,\cdot)\)
\(\chi_{783}(11,\cdot)\)
\(\chi_{783}(14,\cdot)\)
\(\chi_{783}(32,\cdot)\)
\(\chi_{783}(47,\cdot)\)
\(\chi_{783}(50,\cdot)\)
\(\chi_{783}(56,\cdot)\)
\(\chi_{783}(68,\cdot)\)
\(\chi_{783}(77,\cdot)\)
\(\chi_{783}(95,\cdot)\)
\(\chi_{783}(101,\cdot)\)
\(\chi_{783}(113,\cdot)\)
\(\chi_{783}(119,\cdot)\)
\(\chi_{783}(131,\cdot)\)
\(\chi_{783}(137,\cdot)\)
\(\chi_{783}(155,\cdot)\)
\(\chi_{783}(164,\cdot)\)
\(\chi_{783}(176,\cdot)\)
\(\chi_{783}(182,\cdot)\)
\(\chi_{783}(185,\cdot)\)
\(\chi_{783}(200,\cdot)\)
\(\chi_{783}(218,\cdot)\)
\(\chi_{783}(221,\cdot)\)
\(\chi_{783}(230,\cdot)\)
\(\chi_{783}(263,\cdot)\)
\(\chi_{783}(272,\cdot)\)
\(\chi_{783}(275,\cdot)\)
\(\chi_{783}(293,\cdot)\)
\(\chi_{783}(308,\cdot)\)
\(\chi_{783}(311,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((407,379)\) → \((e\left(\frac{17}{18}\right),e\left(\frac{3}{28}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(7\) | \(8\) | \(10\) | \(11\) | \(13\) | \(14\) | \(16\) |
\( \chi_{ 783 }(95, a) \) |
\(1\) | \(1\) | \(e\left(\frac{13}{252}\right)\) | \(e\left(\frac{13}{126}\right)\) | \(e\left(\frac{5}{63}\right)\) | \(e\left(\frac{25}{63}\right)\) | \(e\left(\frac{13}{84}\right)\) | \(e\left(\frac{11}{84}\right)\) | \(e\left(\frac{241}{252}\right)\) | \(e\left(\frac{61}{126}\right)\) | \(e\left(\frac{113}{252}\right)\) | \(e\left(\frac{13}{63}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)