Properties

Label 783.437
Modulus $783$
Conductor $783$
Order $252$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(252)) M = H._module chi = DirichletCharacter(H, M([70,9]))
 
Copy content pari:[g,chi] = znchar(Mod(437,783))
 

Basic properties

Modulus: \(783\)
Conductor: \(783\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(252\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 783.bj

\(\chi_{783}(2,\cdot)\) \(\chi_{783}(11,\cdot)\) \(\chi_{783}(14,\cdot)\) \(\chi_{783}(32,\cdot)\) \(\chi_{783}(47,\cdot)\) \(\chi_{783}(50,\cdot)\) \(\chi_{783}(56,\cdot)\) \(\chi_{783}(68,\cdot)\) \(\chi_{783}(77,\cdot)\) \(\chi_{783}(95,\cdot)\) \(\chi_{783}(101,\cdot)\) \(\chi_{783}(113,\cdot)\) \(\chi_{783}(119,\cdot)\) \(\chi_{783}(131,\cdot)\) \(\chi_{783}(137,\cdot)\) \(\chi_{783}(155,\cdot)\) \(\chi_{783}(164,\cdot)\) \(\chi_{783}(176,\cdot)\) \(\chi_{783}(182,\cdot)\) \(\chi_{783}(185,\cdot)\) \(\chi_{783}(200,\cdot)\) \(\chi_{783}(218,\cdot)\) \(\chi_{783}(221,\cdot)\) \(\chi_{783}(230,\cdot)\) \(\chi_{783}(263,\cdot)\) \(\chi_{783}(272,\cdot)\) \(\chi_{783}(275,\cdot)\) \(\chi_{783}(293,\cdot)\) \(\chi_{783}(308,\cdot)\) \(\chi_{783}(311,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{252})$
Fixed field: Number field defined by a degree 252 polynomial (not computed)

Values on generators

\((407,379)\) → \((e\left(\frac{5}{18}\right),e\left(\frac{1}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 783 }(437, a) \) \(1\)\(1\)\(e\left(\frac{79}{252}\right)\)\(e\left(\frac{79}{126}\right)\)\(e\left(\frac{11}{63}\right)\)\(e\left(\frac{55}{63}\right)\)\(e\left(\frac{79}{84}\right)\)\(e\left(\frac{41}{84}\right)\)\(e\left(\frac{127}{252}\right)\)\(e\left(\frac{109}{126}\right)\)\(e\left(\frac{47}{252}\right)\)\(e\left(\frac{16}{63}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 783 }(437,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 783 }(437,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 783 }(437,·),\chi_{ 783 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 783 }(437,·)) \;\) at \(\; a,b = \) e.g. 1,2