Properties

Label 783.211
Modulus $783$
Conductor $783$
Order $252$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(783, base_ring=CyclotomicField(252)) M = H._module chi = DirichletCharacter(H, M([196,27]))
 
Copy content pari:[g,chi] = znchar(Mod(211,783))
 

Basic properties

Modulus: \(783\)
Conductor: \(783\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(252\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 783.bi

\(\chi_{783}(31,\cdot)\) \(\chi_{783}(40,\cdot)\) \(\chi_{783}(43,\cdot)\) \(\chi_{783}(61,\cdot)\) \(\chi_{783}(76,\cdot)\) \(\chi_{783}(79,\cdot)\) \(\chi_{783}(85,\cdot)\) \(\chi_{783}(97,\cdot)\) \(\chi_{783}(106,\cdot)\) \(\chi_{783}(124,\cdot)\) \(\chi_{783}(130,\cdot)\) \(\chi_{783}(142,\cdot)\) \(\chi_{783}(148,\cdot)\) \(\chi_{783}(160,\cdot)\) \(\chi_{783}(166,\cdot)\) \(\chi_{783}(184,\cdot)\) \(\chi_{783}(193,\cdot)\) \(\chi_{783}(205,\cdot)\) \(\chi_{783}(211,\cdot)\) \(\chi_{783}(214,\cdot)\) \(\chi_{783}(229,\cdot)\) \(\chi_{783}(247,\cdot)\) \(\chi_{783}(250,\cdot)\) \(\chi_{783}(259,\cdot)\) \(\chi_{783}(292,\cdot)\) \(\chi_{783}(301,\cdot)\) \(\chi_{783}(304,\cdot)\) \(\chi_{783}(322,\cdot)\) \(\chi_{783}(337,\cdot)\) \(\chi_{783}(340,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{252})$
Fixed field: Number field defined by a degree 252 polynomial (not computed)

Values on generators

\((407,379)\) → \((e\left(\frac{7}{9}\right),e\left(\frac{3}{28}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 783 }(211, a) \) \(-1\)\(1\)\(e\left(\frac{223}{252}\right)\)\(e\left(\frac{97}{126}\right)\)\(e\left(\frac{31}{126}\right)\)\(e\left(\frac{46}{63}\right)\)\(e\left(\frac{55}{84}\right)\)\(e\left(\frac{11}{84}\right)\)\(e\left(\frac{199}{252}\right)\)\(e\left(\frac{19}{126}\right)\)\(e\left(\frac{155}{252}\right)\)\(e\left(\frac{34}{63}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 783 }(211,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 783 }(211,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 783 }(211,·),\chi_{ 783 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 783 }(211,·)) \;\) at \(\; a,b = \) e.g. 1,2