| L(s)  = 1  |   + (0.749 − 0.661i)2-s     + (0.124 − 0.992i)4-s   + (0.0249 + 0.999i)5-s     + (−0.124 − 0.992i)7-s   + (−0.563 − 0.826i)8-s     + (0.680 + 0.733i)10-s   + (0.246 − 0.969i)11-s     + (0.583 + 0.811i)13-s   + (−0.749 − 0.661i)14-s     + (−0.969 − 0.246i)16-s   + (0.866 − 0.5i)17-s     + (−0.294 + 0.955i)19-s   + (0.995 + 0.0995i)20-s     + (−0.456 − 0.889i)22-s   + (−0.318 − 0.947i)23-s    + ⋯ | 
 
| L(s)  = 1  |   + (0.749 − 0.661i)2-s     + (0.124 − 0.992i)4-s   + (0.0249 + 0.999i)5-s     + (−0.124 − 0.992i)7-s   + (−0.563 − 0.826i)8-s     + (0.680 + 0.733i)10-s   + (0.246 − 0.969i)11-s     + (0.583 + 0.811i)13-s   + (−0.749 − 0.661i)14-s     + (−0.969 − 0.246i)16-s   + (0.866 − 0.5i)17-s     + (−0.294 + 0.955i)19-s   + (0.995 + 0.0995i)20-s     + (−0.456 − 0.889i)22-s   + (−0.318 − 0.947i)23-s    + ⋯ | 
 
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.977 - 0.212i)\, \overline{\Lambda}(1-s) \end{aligned}\]
\[\begin{aligned}\Lambda(s)=\mathstrut & 783 ^{s/2} \, \Gamma_{\R}(s+1) \, L(s)\cr =\mathstrut & (-0.977 - 0.212i)\, \overline{\Lambda}(1-s) \end{aligned}\]
  Particular Values
  
  
        
      |  \(L(\frac{1}{2})\)  | 
            \(\approx\) | 
             \(0.2452021605 - 2.278841178i\)  | 
    
    
      |  \(L(\frac12)\)  | 
            \(\approx\) | 
      
       \(0.2452021605 - 2.278841178i\)  | 
    
    
        
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(1.241898641 - 0.7974038810i\)  | 
          
    
      |  \(L(1)\)  | 
            \(\approx\) | 
       \(1.241898641 - 0.7974038810i\)  | 
          
      
   
   \(L(s) = \displaystyle \prod_{p} F_p(p^{-s})^{-1} \)
 | $p$ | $F_p(T)$ | 
|---|
| bad | 3 |  \( 1 \)  | 
 | 29 |  \( 1 \)  | 
| good | 2 |  \( 1 + (0.749 - 0.661i)T \)  | 
 | 5 |  \( 1 + (0.0249 + 0.999i)T \)  | 
 | 7 |  \( 1 + (-0.124 - 0.992i)T \)  | 
 | 11 |  \( 1 + (0.246 - 0.969i)T \)  | 
 | 13 |  \( 1 + (0.583 + 0.811i)T \)  | 
 | 17 |  \( 1 + (0.866 - 0.5i)T \)  | 
 | 19 |  \( 1 + (-0.294 + 0.955i)T \)  | 
 | 23 |  \( 1 + (-0.318 - 0.947i)T \)  | 
 | 31 |  \( 1 + (-0.521 - 0.853i)T \)  | 
 | 37 |  \( 1 + (0.997 - 0.0747i)T \)  | 
 | 41 |  \( 1 + (0.984 - 0.173i)T \)  | 
 | 43 |  \( 1 + (-0.999 - 0.0249i)T \)  | 
 | 47 |  \( 1 + (-0.715 - 0.698i)T \)  | 
 | 53 |  \( 1 + (0.623 - 0.781i)T \)  | 
 | 59 |  \( 1 + (0.766 - 0.642i)T \)  | 
 | 61 |  \( 1 + (0.992 - 0.124i)T \)  | 
 | 67 |  \( 1 + (-0.270 + 0.962i)T \)  | 
 | 71 |  \( 1 + (-0.826 - 0.563i)T \)  | 
 | 73 |  \( 1 + (0.149 + 0.988i)T \)  | 
 | 79 |  \( 1 + (-0.811 - 0.583i)T \)  | 
 | 83 |  \( 1 + (-0.998 + 0.0498i)T \)  | 
 | 89 |  \( 1 + (-0.930 + 0.365i)T \)  | 
 | 97 |  \( 1 + (-0.889 - 0.456i)T \)  | 
|  show more |  | 
| show less |  | 
 
     \(L(s) = \displaystyle\prod_p \  (1 - \alpha_{p}\,  p^{-s})^{-1}\)
 Imaginary part of the first few zeros on the critical line
−22.60942612415328409910473870556, −21.62771321108996839982382689578, −21.20227306665295711599853209880, −20.217759291053535329219784634692, −19.54830402377978297895967454197, −18.0739827154244098018602383208, −17.61921226355899118036135187089, −16.66089161304178477122393365398, −15.86595935881276123608346373423, −15.25933038571651659585755372965, −14.549035861154606238271079858551, −13.30816218626355234251349580557, −12.78398564055787404954913226579, −12.158265572429176016824151428513, −11.32686895324685473429594882570, −9.82494197274256100364104505664, −8.94573487003310859221268452727, −8.22765810210248288328682191610, −7.36735630859434864278949862901, −6.14108306620270480003558693638, −5.49487873501355187845572819318, −4.73329256106230811305144403218, −3.7308356797938157250913821859, −2.63202634491654556791375343609, −1.40458308675194830019232121799, 
0.38010306952339767301688499156, 1.53833467435573832697619131627, 2.720373313077583811517268690648, 3.6959157472476337775361904412, 4.1300412654261796733378967079, 5.63425003941228713750956687497, 6.36776690108091113375186148394, 7.126819404002593084882900000582, 8.33436418216478388637504071838, 9.73080587410450146610672110051, 10.26189076291320087275069069923, 11.226470805331282849458076164189, 11.578702628326706288033711782346, 12.85992745129591281002257304463, 13.687206187680204558055229120889, 14.32950031103504515146166811000, 14.74675136899618705442864912326, 16.20075244061608856731859159120, 16.59078258921962739492863246834, 18.084646667610556708233380997206, 18.80811782288292471402302523405, 19.26708717238953446088736835249, 20.31653736290519261654366279770, 21.02224742877021851798321391334, 21.75717763829428368799007031628