Properties

Label 7803.712
Modulus $7803$
Conductor $153$
Order $24$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7803, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([8,9]))
 
Copy content pari:[g,chi] = znchar(Mod(712,7803))
 

Basic properties

Modulus: \(7803\)
Conductor: \(153\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{153}(49,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7803.w

\(\chi_{7803}(712,\cdot)\) \(\chi_{7803}(2422,\cdot)\) \(\chi_{7803}(2467,\cdot)\) \(\chi_{7803}(3313,\cdot)\) \(\chi_{7803}(3358,\cdot)\) \(\chi_{7803}(5068,\cdot)\) \(\chi_{7803}(5959,\cdot)\) \(\chi_{7803}(7624,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.128028748427622359924863503266793533356497.1

Values on generators

\((2891,2026)\) → \((e\left(\frac{1}{3}\right),e\left(\frac{3}{8}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\( \chi_{ 7803 }(712, a) \) \(1\)\(1\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{11}{24}\right)\)\(-i\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{24}\right)\)\(e\left(\frac{1}{3}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7803 }(712,a) \;\) at \(\;a = \) e.g. 2