Properties

Label 7800.lc
Modulus $7800$
Conductor $975$
Order $60$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7800, base_ring=CyclotomicField(60)) M = H._module chi = DirichletCharacter(H, M([0,0,30,18,35])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(89,7800)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7800\)
Conductor: \(975\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(60\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 975.cw
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(7\) \(11\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\) \(43\)
\(\chi_{7800}(89,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{7800}(929,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{7800}(1289,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{7800}(2009,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{7800}(2489,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{7800}(3209,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{7800}(3569,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{7800}(4409,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{7800}(4769,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{9}{20}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{7800}(5129,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{7800}(5609,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{7800}(5969,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{7800}(6329,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{11}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{2}{3}\right)\)
\(\chi_{7800}(6689,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{43}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{7800}(7169,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{17}{60}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{1}{3}\right)\)
\(\chi_{7800}(7529,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{11}{20}\right)\) \(e\left(\frac{29}{60}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{2}{3}\right)\)