sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(777, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([0,8,7]))
pari:[g,chi] = znchar(Mod(214,777))
\(\chi_{777}(193,\cdot)\)
\(\chi_{777}(214,\cdot)\)
\(\chi_{777}(310,\cdot)\)
\(\chi_{777}(541,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((260,556,631)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{7}{12}\right))\)
\(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) |
\( \chi_{ 777 }(214, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{5}{6}\right)\) | \(-i\) | \(-i\) | \(e\left(\frac{2}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{5}{12}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(-i\) | \(-i\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)