Properties

Label 7742.bh
Modulus $7742$
Conductor $553$
Order $39$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7742, base_ring=CyclotomicField(78)) M = H._module chi = DirichletCharacter(H, M([26,32])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(177,7742)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(7742\)
Conductor: \(553\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(39\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 553.y
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{39})$
Fixed field: 39.39.12088669642594427834079815641631684897704150233955220736437592661471356964310045748175158745489.2

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(23\) \(25\)
\(\chi_{7742}(177,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{8}{39}\right)\)
\(\chi_{7742}(361,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{16}{39}\right)\)
\(\chi_{7742}(753,\cdot)\) \(1\) \(1\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{34}{39}\right)\)
\(\chi_{7742}(863,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{39}\right)\)
\(\chi_{7742}(1047,\cdot)\) \(1\) \(1\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{37}{39}\right)\)
\(\chi_{7742}(1059,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{5}{39}\right)\)
\(\chi_{7742}(1537,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{22}{39}\right)\)
\(\chi_{7742}(1843,\cdot)\) \(1\) \(1\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{29}{39}\right)\)
\(\chi_{7742}(2137,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{39}\right)\)
\(\chi_{7742}(2419,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{39}\right)\)
\(\chi_{7742}(3399,\cdot)\) \(1\) \(1\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{39}\right)\)
\(\chi_{7742}(3803,\cdot)\) \(1\) \(1\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{17}{39}\right)\)
\(\chi_{7742}(4587,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{35}{39}\right)\)
\(\chi_{7742}(5175,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{22}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{38}{39}\right)\)
\(\chi_{7742}(5555,\cdot)\) \(1\) \(1\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{31}{39}\right)\)
\(\chi_{7742}(5653,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{19}{39}\right)\)
\(\chi_{7742}(6155,\cdot)\) \(1\) \(1\) \(e\left(\frac{20}{39}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{1}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{23}{39}\right)\)
\(\chi_{7742}(6351,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{25}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{14}{39}\right)\)
\(\chi_{7742}(6449,\cdot)\) \(1\) \(1\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{16}{39}\right)\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{31}{39}\right)\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{32}{39}\right)\)
\(\chi_{7742}(6633,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{39}\right)\) \(e\left(\frac{5}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{17}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{10}{39}\right)\)
\(\chi_{7742}(6645,\cdot)\) \(1\) \(1\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{10}{39}\right)\) \(e\left(\frac{28}{39}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{19}{39}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{20}{39}\right)\)
\(\chi_{7742}(6731,\cdot)\) \(1\) \(1\) \(e\left(\frac{34}{39}\right)\) \(e\left(\frac{2}{39}\right)\) \(e\left(\frac{29}{39}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{38}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{4}{39}\right)\)
\(\chi_{7742}(7123,\cdot)\) \(1\) \(1\) \(e\left(\frac{4}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{8}{39}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{11}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{28}{39}\right)\)
\(\chi_{7742}(7319,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{39}\right)\) \(e\left(\frac{32}{39}\right)\) \(e\left(\frac{35}{39}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{23}{39}\right)\) \(e\left(\frac{14}{39}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{25}{39}\right)\)