Properties

Label 7742.625
Modulus $7742$
Conductor $3871$
Order $273$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7742, base_ring=CyclotomicField(546)) M = H._module chi = DirichletCharacter(H, M([416,98]))
 
Copy content pari:[g,chi] = znchar(Mod(625,7742))
 

Basic properties

Modulus: \(7742\)
Conductor: \(3871\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(273\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{3871}(625,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7742.co

\(\chi_{7742}(9,\cdot)\) \(\chi_{7742}(25,\cdot)\) \(\chi_{7742}(81,\cdot)\) \(\chi_{7742}(95,\cdot)\) \(\chi_{7742}(123,\cdot)\) \(\chi_{7742}(163,\cdot)\) \(\chi_{7742}(207,\cdot)\) \(\chi_{7742}(431,\cdot)\) \(\chi_{7742}(485,\cdot)\) \(\chi_{7742}(487,\cdot)\) \(\chi_{7742}(625,\cdot)\) \(\chi_{7742}(683,\cdot)\) \(\chi_{7742}(737,\cdot)\) \(\chi_{7742}(751,\cdot)\) \(\chi_{7742}(821,\cdot)\) \(\chi_{7742}(919,\cdot)\) \(\chi_{7742}(1031,\cdot)\) \(\chi_{7742}(1103,\cdot)\) \(\chi_{7742}(1115,\cdot)\) \(\chi_{7742}(1131,\cdot)\) \(\chi_{7742}(1187,\cdot)\) \(\chi_{7742}(1201,\cdot)\) \(\chi_{7742}(1229,\cdot)\) \(\chi_{7742}(1269,\cdot)\) \(\chi_{7742}(1283,\cdot)\) \(\chi_{7742}(1313,\cdot)\) \(\chi_{7742}(1467,\cdot)\) \(\chi_{7742}(1591,\cdot)\) \(\chi_{7742}(1593,\cdot)\) \(\chi_{7742}(1731,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{273})$
Fixed field: Number field defined by a degree 273 polynomial (not computed)

Values on generators

\((2845,4901)\) → \((e\left(\frac{16}{21}\right),e\left(\frac{7}{39}\right))\)

First values

\(a\) \(-1\)\(1\)\(3\)\(5\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(23\)\(25\)
\( \chi_{ 7742 }(625, a) \) \(1\)\(1\)\(e\left(\frac{257}{273}\right)\)\(e\left(\frac{61}{273}\right)\)\(e\left(\frac{241}{273}\right)\)\(e\left(\frac{62}{91}\right)\)\(e\left(\frac{67}{273}\right)\)\(e\left(\frac{15}{91}\right)\)\(e\left(\frac{223}{273}\right)\)\(e\left(\frac{16}{39}\right)\)\(e\left(\frac{13}{21}\right)\)\(e\left(\frac{122}{273}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7742 }(625,a) \;\) at \(\;a = \) e.g. 2