Properties

Label 7728.6607
Modulus $7728$
Conductor $644$
Order $22$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(7728, base_ring=CyclotomicField(22)) M = H._module chi = DirichletCharacter(H, M([11,0,0,11,18]))
 
Copy content pari:[g,chi] = znchar(Mod(6607,7728))
 

Basic properties

Modulus: \(7728\)
Conductor: \(644\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(22\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{644}(167,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 7728.ew

\(\chi_{7728}(223,\cdot)\) \(\chi_{7728}(1231,\cdot)\) \(\chi_{7728}(1567,\cdot)\) \(\chi_{7728}(2239,\cdot)\) \(\chi_{7728}(2911,\cdot)\) \(\chi_{7728}(3247,\cdot)\) \(\chi_{7728}(3583,\cdot)\) \(\chi_{7728}(3919,\cdot)\) \(\chi_{7728}(6607,\cdot)\) \(\chi_{7728}(7615,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{11})\)
Fixed field: Number field defined by a degree 22 polynomial

Values on generators

\((4831,5797,5153,6625,6721)\) → \((-1,1,1,-1,e\left(\frac{9}{11}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(25\)\(29\)\(31\)\(37\)\(41\)
\( \chi_{ 7728 }(6607, a) \) \(1\)\(1\)\(e\left(\frac{7}{22}\right)\)\(e\left(\frac{19}{22}\right)\)\(e\left(\frac{21}{22}\right)\)\(e\left(\frac{5}{22}\right)\)\(e\left(\frac{3}{11}\right)\)\(e\left(\frac{7}{11}\right)\)\(e\left(\frac{8}{11}\right)\)\(e\left(\frac{10}{11}\right)\)\(e\left(\frac{2}{11}\right)\)\(e\left(\frac{7}{22}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 7728 }(6607,a) \;\) at \(\;a = \) e.g. 2