sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7728, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([0,11,0,11,3]))
pari:[g,chi] = znchar(Mod(4633,7728))
\(\chi_{7728}(937,\cdot)\)
\(\chi_{7728}(3625,\cdot)\)
\(\chi_{7728}(3961,\cdot)\)
\(\chi_{7728}(4297,\cdot)\)
\(\chi_{7728}(4633,\cdot)\)
\(\chi_{7728}(5305,\cdot)\)
\(\chi_{7728}(5977,\cdot)\)
\(\chi_{7728}(6313,\cdot)\)
\(\chi_{7728}(7321,\cdot)\)
\(\chi_{7728}(7657,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((4831,5797,5153,6625,6721)\) → \((1,-1,1,-1,e\left(\frac{3}{22}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 7728 }(4633, a) \) |
\(1\) | \(1\) | \(e\left(\frac{3}{22}\right)\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{1}{22}\right)\) | \(e\left(\frac{3}{11}\right)\) | \(e\left(\frac{21}{22}\right)\) | \(e\left(\frac{7}{22}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{3}{22}\right)\) |
sage:chi.jacobi_sum(n)