Properties

Label 768.635
Modulus $768$
Conductor $768$
Order $64$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(768, base_ring=CyclotomicField(64)) M = H._module chi = DirichletCharacter(H, M([32,33,32]))
 
Copy content pari:[g,chi] = znchar(Mod(635,768))
 

Basic properties

Modulus: \(768\)
Conductor: \(768\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(64\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 768.ba

\(\chi_{768}(11,\cdot)\) \(\chi_{768}(35,\cdot)\) \(\chi_{768}(59,\cdot)\) \(\chi_{768}(83,\cdot)\) \(\chi_{768}(107,\cdot)\) \(\chi_{768}(131,\cdot)\) \(\chi_{768}(155,\cdot)\) \(\chi_{768}(179,\cdot)\) \(\chi_{768}(203,\cdot)\) \(\chi_{768}(227,\cdot)\) \(\chi_{768}(251,\cdot)\) \(\chi_{768}(275,\cdot)\) \(\chi_{768}(299,\cdot)\) \(\chi_{768}(323,\cdot)\) \(\chi_{768}(347,\cdot)\) \(\chi_{768}(371,\cdot)\) \(\chi_{768}(395,\cdot)\) \(\chi_{768}(419,\cdot)\) \(\chi_{768}(443,\cdot)\) \(\chi_{768}(467,\cdot)\) \(\chi_{768}(491,\cdot)\) \(\chi_{768}(515,\cdot)\) \(\chi_{768}(539,\cdot)\) \(\chi_{768}(563,\cdot)\) \(\chi_{768}(587,\cdot)\) \(\chi_{768}(611,\cdot)\) \(\chi_{768}(635,\cdot)\) \(\chi_{768}(659,\cdot)\) \(\chi_{768}(683,\cdot)\) \(\chi_{768}(707,\cdot)\) ...

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: $\Q(\zeta_{64})$
Fixed field: Number field defined by a degree 64 polynomial

Values on generators

\((511,517,257)\) → \((-1,e\left(\frac{33}{64}\right),-1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\( \chi_{ 768 }(635, a) \) \(1\)\(1\)\(e\left(\frac{1}{64}\right)\)\(e\left(\frac{21}{32}\right)\)\(e\left(\frac{53}{64}\right)\)\(e\left(\frac{15}{64}\right)\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{23}{64}\right)\)\(e\left(\frac{7}{32}\right)\)\(e\left(\frac{1}{32}\right)\)\(e\left(\frac{59}{64}\right)\)\(e\left(\frac{5}{8}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 768 }(635,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 768 }(635,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 768 }(635,·),\chi_{ 768 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 768 }(635,·)) \;\) at \(\; a,b = \) e.g. 1,2